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Abstract
This project examines two general purpose factoring al-
gorithms and implements both. The first algorithm ex-
amined is Dixon’s factoring method while the second is
the Quadratic Sieve Factoring Algorithm.

1 Introduction

Integer factorization is the decomposition of a composite
number into a product of smaller numbers. With certain
classes of intergers, no efficient integer factoring algo-
rithm is known. The difficulty of integer factorization is
at the heart of many cryptographic systems such as RSA.
An algorithm that could efficiently factor arbritrary num-
bers would compromise many cryptographic systems.

2 Background

Fermat’s Factorization Algorithm: Many state of the
art factoring algorithms are based on Fermat’s factoriza-
tion algorithm which is itself based on congruence of
squares. If we know of some x and y such that x2 ≡ y2

mod N for some integer we want to factor, N. Then as
long as x 6≡ y mod N then we know that (x−y)(x+y)≡
0 mod N and so gcd(x− y,N) is a non-trivial factor of
N.
The factoring algorithms we will examine work by more
efficiently finding an x and y that statisfy x2≡ y2 mod N.

3 Dixon’s Algorithm

3.1 Algorithm Overview
Dixon’s algorithm [1] finds the squares by first finding a
number of relations:

z2 = ∏
pi∈P

pai
i mod N

For some set of prime factors P otherwise known as
the factor base.

Once we find a sufficient number of these relations we
use linear algebra to find a multiciplative combination of
these relations in such a way that both sides are squares.
That is we find:

z2b1
1 z2b2

2 ...z2bk
k = ∏

pi∈P
p

ai,1b1+ai,2b2+...+ai,kbk
i mod N

such that ai,1b1 +ai,2b2 + ...+ai,kbk ≡ 0 mod 2
We can then proceed to find the non trivial factors us-

ing Fermat’s Factoring Algorithm.

3.2 Implementation Details
3.2.1 Choosing a Bound

The optimal bound for factoring a number n is about
e

1
2
√

lnn ln lnn. So we set bound to this.

3.2.2 Generating Relations

We find relations by iterating through all the numbers
x from

√
n to n and checking to see if x2 is b-smooth.

Once we find a number that is b-smooth we note the
number and the exponents we need to raise each factor
base. We will be using these relations to find a linear
dependency. For such a dependency to exist we need one
more relation than there are factors in the factor base.
So once that many relations have been found we can stop.



We check b-smoothness of a number x by using repeated
trial division for each prime in the factor base. If after all
the repeated division we are left with 1 then it means that
the number has all its factors in the factor base and so is
b-smooth.

3.2.3 Finding Congruence

It would be best to explain the procedure to find a
congruence of squares by going through an example.
So suppose we are factoring 16850989. The algorithm
obtains a factor base of [2,3,5,7,11,13,17,19,23,29]
and the following relations (expressed as a list of z,
exponent list pairs):

4105, [2, 2, 0, 0, 0, 0, 0, 0, 0, 0]

4113, [2, 0, 1, 0, 1, 1, 0, 0, 1, 0]

4136, [0, 1, 0, 1, 0, 0, 0, 0, 3, 0]

4159, [2, 2, 0, 2, 1, 0, 0, 0, 1, 0]

4168, [0, 6, 1, 0, 1, 1, 0, 0, 0, 0]

4192, [0, 1, 5, 1, 1, 0, 0, 0, 0, 0]

4269, [2, 0, 0, 4, 1, 1, 0, 0, 0, 0]

4558, [0, 1, 4, 1, 0, 1, 0, 0, 1, 0]

4633, [2, 1, 2, 1, 0, 3, 0, 0, 0, 0]

4742, [0, 4, 2, 0, 2, 0, 0, 0, 1, 0]

4817, [2, 1, 4, 1, 2, 0, 0, 0, 0, 0]

Note that the first row is already all even but for the sake
of example we will ignore the fact that that row has all
even exponents. We can express the the exponents as a
large matrix:



2 2 0 0 0 0 0 0 0 0
2 0 1 0 1 1 0 0 1 0
0 1 0 1 0 0 0 0 3 0
2 2 0 2 1 0 0 0 1 0
0 6 1 0 1 1 0 0 0 0
0 1 5 1 1 0 0 0 0 0
2 0 0 4 1 1 0 0 0 0
0 1 4 1 0 1 0 0 1 0
2 1 2 1 0 3 0 0 0 0
0 4 2 0 2 0 0 0 1 0
2 1 4 1 2 0 0 0 0 0


Given the relations, we use linear algebra to find a con-
gruence of squares. Our general goal is to find a set of
relations so that the sum of each exponent a factor must
be raised to is even. Since only parity matters here, we
take all the exponent lists and take them mod 2:



0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 1 0
0 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0
0 0 1 0 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0 1 0
0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 0


To find a set of rows that add up to even exponents, we
can find a set of rows that add up to one other row (mod
2) and so all these rows combined would have to have
each entry be even. This is equivalent to finding which
linearly independent rows could combine to a linearly
dependent row. To find the linearly indepentent rows (or
the row space) of the matrix we can get the reduced row
echeolon form of the exponent matrix transposed:



0 1 0 0 0 0 2 1 2 1 1
0 0 1 0 0 0 1 2 2 0 1
0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 3 2 3 1 1
0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


The index of a leading 1 tells us the index of a linearly
independent row in the exponent matrix. So in our ex-
ample, the rows at index 1, 2, 3, 4, and 5 (0 indexed)
are linearly independent. All other rows are dependent.
Now we select a dependent row. Let us say we select the
last row. Now we must find a linear combination of the
independent rows to get this dependent row. That is we
want to solve for v such that:

v∗


0 0 1 0 1 1 0 0 1 0
0 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0
0 0 1 0 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0 0


=
[
0 1 0 1 0 0 0 0 0 0

]
Solving for v using linear algebra we get[
1 1 0 1 0

]
. In python this can be done us-

ing the numpy linalg library. Some minor details that
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needed considering are the fact that matrix solvers
assume that the left hand side is a square matrix so we
just pad with zeroes. Another consideration is that since
there isn’t a unique solution and we don’t need one, we
can use lstsq which gives us an approximate solution
and we can just round the numbers to the nearest integer
and then we are only concerned with the result modulo 2
since include a row twice gives us the same result parity
wise as just not including the row at all. That is we take
the mod 2 of the result v.

So that means combining the rows at index 1, 2, and 4
get us the last row. So now we have enough information
to find the congruence:

4113, [2, 0, 1, 0, 1, 1, 0, 0, 1, 0]

4136, [0, 1, 0, 1, 0, 0, 0, 0, 3, 0]

4168, [0, 6, 1, 0, 1, 1, 0, 0, 0, 0]

4817, [2, 1, 4, 1, 2, 0, 0, 0, 0, 0]

------------------------------------

[4, 8, 6, 2, 4, 2, 0, 0, 4, 0]

So (4113 ∗ 4136 ∗ 4168 ∗ 4817)2 is congruent modulo n
to the factor base raised to exponents above which are all
even so is a square so we are done.

4 Quadratic Sieve

4.1 Algorithm Overview

The quadratic sieve factoring algorithm [2] builds on
Dixon’s Algorithm and makes a number of improve-
ments.

First instead of just using x2 in finding relations,
quadratic sieve checks if f (x) is b-smooth for some
quadratic function on x. Normally this function will be
of the form (x−

√
(n))2 − n. This keeps f (x) small

which increases the chance of it being smooth.

Instead of using trial division to find relations, quadratic
sieve uses a sieve. By solving f (x) and properties of
the factor base, we can find which indexes into the
sieve are divisible by a factor. Once enough candidate
relations have been found in the sieve we can then use
trial division on a smaller set of numbers to find the
exponents for the relations.

The rest of the algorithm follows just as Dixon’s algo-
rithm once the relations have been found

4.2 Implementation Details
4.2.1 Factor Base

Instead of simply getting all prime numbers less than a
calculated bound like in Dixon’s Algorithm, Quadratic
Sieve requires that each for each factor in the factor base
p, the number we want to factor n must be a quadratic
residue modulo p. That is n has a squareroot modulo p.

If p is 2, then any n is a quadratic residue. If p is a factor
of n then it is also a quadratic residue. Finally we check if
n is a quadratic residue modulo p with Euler’s Criterion:
n

p−1
2 mod p is 1 iff n is a quadratic residue modulo p

4.2.2 Generating Relations

First we initialize the sieve to be f (x) for x from 0 to
√

cn
for some constant c. To perform the sieve, we iterate
through the primes in the factor base. For each prime,
we solve f (x) = 0mod p to find what the modulo of x is
to make the statement true. Suppose the solution is w.
We can then know that each element at index w+ cp for
any c is divisible by p. Since f (x) is quadratic there will
be two solutions for p not equal to 2. Once we finish
going through the factors, any element in the sieve that
has value 1 is necessarily b-smooth.

4.2.3 Finding Congruences

Once the relations have been found, the quadratic sieve
factoring algorithm follows Dixon’s Algorithm.

5 Code

You can access the open source code here:

https://github.com/brendongo/factoring
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