CS 359C – Classics of Cryptography

April 19, 2017

Lecture 3: Number-Theoretic Cryptography

Instructor: Henry Corrigan-Gibbs, David Wu

Scribe: Mark Matthew Anderson

Review from Last Week

- Two ways to build crypto schemes:
 - 1) Use assumptions (e.g. factoring is hard)
 - 2) Change the model

- Even-Mansour Cipher

- Uses random permutation model
- All parties have access to Π/Π^{-1} random permutations
- In practice, $\hat{\Pi}$ is coded into standard

Even-Mansour security proof (used hybrid argument)

Game 0: Real attack game (adversary talks to EM cipher)

Game 1: Rephrasing

Game 2: Ideal World (adversary talks to random/ideal cipher)

– Time/space Tradeoffs (Hellman Tables)

"Inverting a function with advice"

$$\begin{split} &[N]: \{1, \dots, N\}: 2^n \\ &\text{Given: } f: [N] \to [N], \\ & y \in [N], \\ & s \text{ bits of "advice"} \to \text{precomputation} \\ &\text{Task: find } x \in [N] \text{ such that } y = f(x) \\ &\text{Theorem (Hellman): With } s \in \mathcal{O}(N^{2/3}) \text{ bits of advice, can invert } f \text{ in time } \mathcal{O}(N^{2/3}) \\ & \Rightarrow \text{Inverting DES takes} \approx 2^{40} \text{ time (keys: } 2^{56}) \end{split}$$

- Collision Finding

•	Mee	t in the Middle		space:	$\mathcal{O}(\sqrt{N})$		time:	$\mathcal{O}(\sqrt{N})$
•	Rho	Method		space:	$\mathcal{O}(1)$		time:	$\mathcal{O}(\sqrt{N})$
	-		`		(\mathbf{a}_{1})	`		(2) (]]]

• Parallel Rho (P processors) space: $\mathcal{O}(1)$ (per processor) time: $\mathcal{O}(\sqrt{N}/P)$

\mathbf{RSA}

- First public key encryption and digital signatures
- RSA assumptions have more structure than other assumptions

- Going out of style

- Quantum algorithms can break all assumptions
- Large keys (λ^3 -bit keys ≈ 4096 bits)

A Survey of Hard Problems (Related to RSA)

Factoring

Sample $p, q \stackrel{R}{\leftarrow} \{\lambda \text{-bit primes}\}$ $N \leftarrow p \cdot q$ Given N, produce (p, q)Best attack: $e^{\mathcal{O}(\lambda^{1/3} \cdot (\log \lambda)^{2/3})} \notin$ polynomial time $\ll 2^{\lambda}$ General Number Field Sieve (Pollard 1988)

RSA-e (e is an Odd Prime)

Sample $p, q \stackrel{R}{\leftarrow} \{\lambda \text{-bit primes}\}$ gcd(e, p - 1) = 1, gcd(e, q - 1) = 1 $N \leftarrow p \cdot q$ $x \stackrel{R}{\leftarrow} \mathbb{Z}_N$ $a \leftarrow x^e \in \mathbb{Z}_N$ Given (N, a) produce xoften: e = 3, e = 65537"Taking e^{th} roots mod N is hard without the factors of N"

Strong RSA Problem

Sample $p, q \stackrel{R}{\leftarrow} \{\lambda \text{-bit primes}\}\$ gcd(e, p - 1) = 1, gcd(e, q - 1) = 1 $N \leftarrow p \cdot q$ $a \stackrel{R}{\leftarrow} \mathbb{Z}_N$ Given (N, a) produce (x, e) such that $a = x^e \in \mathbb{Z}_N$ and $e \neq \pm 1$

Hardness

Factoring \geq RSA- $e \geq$ Strong-RSA RSA-e has unique answer Strong-RSA has exponential answers

Random Self Reduction

For a given modulus N, we'd like that computing $a^{1/e} \mod N$ is hard for "almost all" $a \in \mathbb{Z}_N$. "Hard on average"

We know that for some $a \in \mathbb{Z}_N$, computing $a^{1/e} \mod N$ is easy!

 $\rightarrow a = 1$, numbers with cube roots over the integers

We can show that either:

- a) finding $a^{1/e} \mod N$ is hard for "almost all" $a \in \mathbb{Z}_N$ or
- b) finding $a^{1/e} \mod N$ is easy everywhere

<u>Claim</u>:

Say there exists an efficient algorithm \mathcal{A}_N such that

$$\Pr_{\substack{a \in \mathbb{Z}_N \\ a \notin \mathbb{Z}_N}} [\mathcal{A}_N(a) = a^{1/e} \in \mathbb{Z}_N] = \epsilon$$

then there exists an efficient algorithm \mathcal{B}_N such that for all $x \in \mathbb{Z}_N$

$$\Pr_{random \ coins \ of \ \mathcal{B}_N}[\mathcal{B}_N(x) = x^{1/e} \in \mathbb{Z}_N] = \epsilon$$

Proof.

$$\mathcal{B}_{N}(x) \left\{ \begin{array}{l} r \xleftarrow{R} \mathbb{Z}_{N} \\ y \leftarrow \mathbb{A}_{N}(x \cdot r^{e}) \\ z \leftarrow y \cdot r^{-1} \in \mathbb{Z}_{N} \\ \text{if } z^{e} \neq x \text{: output "} fail" \\ \text{else } \text{output } z \end{array} \right\}$$

 $Pr[\overline{fail}] = \Pr_{a}[\mathcal{A}_{N}(a) = a^{1/e} \in \mathbb{Z}_{N}] = \epsilon \blacksquare$ - caveat: only works for some N

Crypto from Factoring

Trapdoor One-Way Function

 $\begin{array}{l} (pk,sk) \leftarrow Gen(1^{\lambda}) \\ y \leftarrow F(pk,x) \quad x \in \mathcal{X}, \, y \in \mathcal{Y} \\ x \leftarrow F^{-1}(sk,y) \end{array}$

Correctness: For all (pk, sk) from Gen, for all $x \in \mathcal{X}$, $F(pk, F^{-1}(sk, y)) = y$

Security: For all efficient adversaries \mathcal{A} $TDFAdv[\mathcal{A}, F] := Pr[y = F(pk, x')]$ $TDFAdv[\mathcal{A}, F] \in negl(\lambda)$

Rabin (1979)

At a high level, this is just RSA with e = 2RSA: $x^e \mod N$ Rabin: $x^2 \mod N$ $(N, p) \leftarrow Gen(1^{\lambda})$ $y \leftarrow F(N, x \in \mathbb{Z}_N)$ returns $x^2 \mod N$ $x \leftarrow F^{-1}(p, y)$ returns $\sqrt{y} \mod N$ $- \text{ collisions: } (-x)^2 = x^2$

Chinese Remainder Theorem (CRT)

Given primes p and q, $p \neq q$, and given x_p and x_q such that $x_p = x \mod p$ $x_q = x \mod q$ there is an algorithm that outputs $x \mod N \to x \mod pq$

Square Roots

 $\frac{\text{Claim:}}{\text{If } p \equiv 3 \mod 4, \text{ then}}$ p = 4p' + 3

 $x = y^{\frac{p+1}{4}} \mod p$ is a square root of y in \mathbb{Z}_p^*

Proof.

$$x^{2} = (y^{\frac{p+1}{4}})^{2} = y^{\frac{p+1}{2}} = y \cdot y^{\frac{p-1}{2}}$$

(let $y = r^{2}$) $= y \cdot (r^{2})^{\frac{p-1}{2}}$
 $= y \cdot r^{p-1} \in \mathbb{Z}_{p}$
 $= y \in \mathbb{Z}_{p} \blacksquare$

Also easy (not as easy) if $p \equiv 1 \mod 4$

If x is root of y,
$$(p - x)$$
 is also:
 $(p - x)^2 = p^2 - 2px + x^2$
 $= x^2 \mod p$

 \longrightarrow There will be four square roots mod N if any square roots.

Rabin and Factoring

<u>Claim</u>:

Given an efficient algorithm \mathcal{A} that inverts Rabin's function, there exists an efficient algorithm \mathcal{B} that factors N.

We have x, x' such that

 $x^{2} = (x')^{2} \mod N$ $x^{2} - (x')^{2} = 0 \mod N$ $(x - x')(x + x') = 0 \mod N$ if $x = \pm x' : x - x' = 0 \in \mathbb{Z}$ $x + x' = 0 \in \mathbb{Z}$ else $(x \neq \pm x')$ then $(x - x')(x + x') = k \cdot N$ $\rightarrow qcd(x - x', N)$ gives factor of N

Four cases:

 $\begin{array}{lll} x = x' \mod p & x = x' \mod q & \rightarrow \text{ not useful} \\ x = x' \mod p & x \neq x' \mod q & \rightarrow \text{ useful} \\ x \neq x' \mod p & x = x' \mod q & \rightarrow \text{ useful} \\ x \neq x' \mod p & x \neq x' \mod q & \rightarrow \text{ not useful} \end{array}$

Another View of RSA Problems

(Rabin) $a \stackrel{R}{\leftarrow} \mathbb{Z}_N$ find a root of $f(x) = x^2 - a \in \mathbb{Z}_N$

 $(\text{RSA}) \\ a \stackrel{R}{\leftarrow} \mathbb{Z}_N$

find a root of $f(x) = x^e - a \in \mathbb{Z}_N$

(Crazy RSA) $a \stackrel{R}{\leftarrow} \mathbb{Z}_N$ find a root of $f(x) = x^7 + 4x^2 + 2x + a \in \mathbb{Z}_N$

Only (known) way to solve these without factors of N is to solve over the integers and reduce mod N