CS 359C — Classics of Cryptography April 19, 2017
Lecture 3: Number-Theoretic Cryptography

Instructor: Henry Corrigan-Gibbs, David Wu Scribe: Mark Matthew Anderson

Review from Last Week

— Two ways to build crypto schemes:

1) Use assumptions (e.g. factoring is hard)
2) Change the model

— Even-Mansour Cipher

e Uses random permutation model

e All parties have access to IT/TI"! random permutations

e In practice, I1 is coded into standard

Even-Mansour security proof (used hybrid argument)
Game 0: Real attack game (adversary talks to EM cipher)
Game 1: Rephrasing
Game 2: Ideal World (adversary talks to random/ideal cipher)

— Time/space Tradeoffs (Hellman Tables)

”Inverting a function with advice”

[N]: {1,..., N}:2"

Given: f : [N] — [N],
y € [N],
s bits of "advice” — precomputation

Task: find x € [N] such that y = f(z)

Theorem (Hellman): With s € O(N?/3) bits of advice, can invert f in time O(N?%/3)
= Inverting DES takes =~ 20 time (keys: 250)

— Collision Finding

e Meet in the Middle space: OW/N) time: O/N)
e Rho Method space: O(1) time: O/N)
e Parallel Rho (P processors) space: O(1) (per processor) time: Of/N/P)

3-1



RSA

— First public key encryption and digital signatures
— RSA assumptions have more structure than other assumptions
— Going out of style

e Quantum algorithms can break all assumptions

e Large keys (\3-bit keys ~ 4096 bits)

A Survey of Hard Problems (Related to RSA)

Factoring
Sample p, q pia {A-bit primes}
N<p-q
Given N, produce (p,q)
Best attack: eC(\/*-(log)?/?) ¢ polynomial time
< 22
General Number Field Sieve (Pollard 1988)

RSA-¢ (e is an Odd Prime)
Sample p, q & {A-bit primes}
ged(e,p—1) =1, ged(e,g—1) =1
N<<p-q
T <E AN
a+ x° €ZN
Given (N, a) produce x
often: e = 3,e = 65537
»Taking e'” roots mod N is hard without the factors of N”

Strong RSA Problem

Sample p, ¢ & {A\-bit primes}
ged(e,p—1) =1, ged(e,g—1) =1
N<<p-q
a <£ ZN

Given (N, a) produce (x,e) such that
a=z°€Zpy and
e#+1

Hardness
Factoring > RSA-e > Strong-RSA
RSA-¢ has unique answer
Strong-RSA has exponential answers

3-2



Random Self Reduction

For a given modulus N, we’d like that computing a'/¢ mod N is hard for "almost all” a € Zy.
”Hard on average”
We know that for some a € Zy, computing a'/¢ mod N is easy!
— a = 1, numbers with cube roots over the integers
We can show that either:
a) finding a'/¢ mod N is hard for "almost all” a € Zy or
b) finding a'/¢ mod N is easy everywhere
Claim:
Say there exists an efficient algorithm Ay such that
57“ [An(a) = a'/® € Zy] =€

a<—ZN
then there exists an efficient algorithm By such that for all x € Zy
Pr By(z) =zl € Zy]=¢

random coinsof By

Proof.
By(z) {r & Zy
y < An(z-7°)
zey-r-teZy
if z¢ # x: output ” fail”
else output z

}

Pr(fail] = JZT’[AN(G) —al/*cZy]=€m

— caveat: only works for some N

Crypto from Factoring

Trapdoor One-Way Function
(pk, sk) + Gen(1})
y <+ F(pk,x) ze€X,ye)y
x — F~Y(sk,y)

Correctness: For all (pk, sk) from Gen,
forall z € X,
F(pk, F~'(sk,y)) =y

Security: For all efficient adversaries A

TDF Adv[A, F] := Prly = F(pk,2')]
TDF Adv[A, F] € negl(\)

3-3



Rabin (1979)
At a high level, this is just RSA with e = 2
RSA: z° mod N
Rabin: 22 mod N
(N,p) < Gen(1?)
y<«F(N,x € Zn)
returns 22 mod N
z +F~(p,y)
returns /y mod N

— collisions: (—z)? = 22

Chinese Remainder Theorem (CRT)

Given primes p and ¢, p # ¢, and given z,, and z, such that
zp = mod p
zq = x mod ¢

there is an algorithm that outputs
x mod N — x mod pq

Square Roots

Claim:
If p = 3 mod 4, then
p=4p'+3

p+1

r=vy 4« modp
is a square root of y in Zy

Proof.
22 =y

(let y = 7?) =

Also easy (not as easy) if p =1 mod 4
If x is root of y, (p — x) is also:
(p—2)* = p* — 2px +2?

= 22 mod p

— There will be four square roots mod N if any square roots.



Rabin and Factoring
Claim:
Given an efficient algorithm A that inverts Rabin’s function, there exists an efficient algorithm B
that factors N.

We have z, 2’ such that
2?2 = (/)2 mod N
2?2 — (/)% =0 mod N
(x —2")(z +2') = 0 mod N

fr=d2':2—-2'"=0€Z
z+2'=0€Z
else (x # ') then
(x—a2)z+2")=k-N
— ged(z — 2/, N) gives factor of N

Four cases:
z =2’ mod p z =2’ mod ¢ — not useful
z =2 mod p x # 2’ mod ¢ — useful
x # 2’ mod p xz =2 mod ¢ — useful
x # 2’ mod p x # 2’ mod ¢ — not useful

Another View of RSA Problems

(Rabin)
R
a <— ZN
find a root of f(z) =22 —a € Zy
(RSA)
R
a < ZN

find a root of f(x) =2 —a € Zy

(Crazy RSA)
a ﬁ AN
find a root of f(z) =" + 422 +2x +a € Zy

Only (known) way to solve these without factors of NV is to solve over the integers and
reduce mod N

3-5



