Remaining Private in the World of Great Data Exchange

William Kovacs
Stanford University

Abstract

With an ever increasing number of databases that peo-
ple access on a daily basis, user privacy becomes an
increasing issue. In order to ensure that not even the
owners of the database can determine the records that
a particular user is trying to access, plenty of research
has been devoted to developing Private Information Re-
trieval schemes capable of masking a user’s queries.
Such schemes can be broken into two categories: the
information-theoretic and the computationally-bounded
approaches. Both styles will be examined, along with a
quick look at how they can be combined to improve per-
formance.

1 Introduction

From watching movies on Netflix to watching NAS-
DAQ’s stocks rise and fall to watching looming love
interests on eHarmony, databases have become an es-
sential aspect of many people’s lives. As such, people
can feel that their privacy is threatened. Some modern
techniques, such as user-targeted ads, can further exac-
erbate this feeling of diminished privacy. After all, if
the site knows what you are searching, what’s preventing
a curious database manager from examining any user’s
queries?

In order to ensure that a user’s queries remains pri-
vate, a Private Information Retrieval (PIR) system can
be used to mask them. Essentially, when a user accesses
a database via PIR, the query and response are performed
in such a way that the owner of the database has no
knowledge of which record was retrieved. It should be
stressed that a PIR system only protects the privacy of the
user, and not of the database. As such this type of system
can be thought of as a weaker form of oblivious transfer.
Indeed, in some circumstances, it is possile to create an
oblivious transfer scheme from a PIR scheme [6].

A trivial, though incredibly inefficient, solution to PIR

is to send the entire database to the user. Instead, the
main goal of PIR research is to provide a retrieval system
that is faster than this trivial method, while retaining the
same privacy. Currently, there are two main approaches
in this field: the information theoretic approach, which
relies on the use of multiple servers, and computational
PIR (cPIR), which relies on the computational limita-
tions of a single server. In prior years, the former method
has been preferred due to the computationally expensive
nature of cPIRs. Indeed, in their oft-cited paper, Sion
and Carbunar posited that cPIR protocols were simply
not practical [19]. While this may have been true at the
time, research since then have come to refute such claims
and cPIR has become a feasible alternative to systems
requiring multiple servers [16]. Through the remaining
sections of this paper, exemplars of the different model
types will be examined.

2 Informational Theoretic PIR

Chor et al. were the first to introduce the PIR prob-
lem, and provide a solution that utilizes distributed
databases [5]. In order to be secure, the servers housing
the databases must not collude with each other. Chor et
al. build their solution one piece at a time, starting from
a simple, two-server scheme that is capable of privately
retreiving a single bit. This scheme is then improved to
utilize multiple servers in a more efficient manner, before
finally being extended to blocks of data.

2.1 Two-Server Bit Retrieval

Say a user is trying to identify the i’th bit of an n-bit
database, copies of which are located on two separate
servers. The user can generate a random subset of indices
(containing values from 1 to n, each with a probability of
1/2 of being included), followed by the creation of a sec-
ondary subset, which contains all of the same elements
as the previous one, except for the i’th one. That is, i is

present in only one of the two subsets, and the rest of the
indices are shared between the two. The user sends one
subset to the first server, and the other subset to the sec-
ond. The servers then extract the bit values present at the
provided indices, XORs them together, and returns those
values to the user. The user can then XOR the two bits
that he receives to get the value of the bit at the desired
index.

The correctness of this scheme can be seen by un-
derstanding that the values retrieved by the servers are
from all of the same indices except for the i’th one, so
in the XORs, these values cancel each other out, leaving
only the value of i. Furthermore, because each subset
appears random to each server, the servers gain no infor-
mation about the desired index. However, this scheme
does not improve on the communication costs compared
to the trivial method because the user still has to send n-
bit strings to the servers instead of receiving one. Instead,
the underlying idea can be adapted to increase efficieny,
as discussed in the next section.

2.2 Multi-Server Bit Retrieval

By using 2¢ servers and embedding the indices in a d-
dimensional cube, the communication costs of the PIR
scheme can be reduced, due to the succint representation
of ’subcubes’ as compared to the afore-used subsets. The
length of each side of the cube is \"/71, and each index is
associated with a tuple corresponding to the coordinates
of a unique location in the cube. Then, the two server
scheme to generate subsets is applied along each dimen-
sion. That is, for each dimension, a random subset of
indices is chosen, and a secondary subset is generated
where the coordinate for the i’th index differs, generat-
ing d pairs of subsets.

One of each pair of subsets is sent to each server.
To decide which pair, the servers are labelled with bit-
strings of length d. For the subset corresponding to di-
mension k, if the k’th bit of the label is a 0, the original
random subset is sent, and if it’s a 1, the switched one
is sent. This ensures that each server receives a unique
combination of subsets. The server then XORs the val-
ues at the indices corresponding to the subcube (that is
all of the combinations of the coordinates) defined by the
subsets, and sends that back to the server. The user then
XORs the values to retrieve the desired bit. This works
because the coordinate corresponding to the i’th index
only appears in one subcube (this can be intuitively seen
by knowing that for each pair of subsets, only one con-
tains the coordinate corresponding to #, and each of these
correct subsets needs to be sent at the same time, which
only happens once), while the remaining ones appear an
even number of times, so the XORing cancels all but the
i’th index. The communication cost for this scheme is

24.(d - \/n+1), because for each of the 2¢ servers, the
user sends /7 bits and receives 1.

To reduce the cost of the multi-server scheme, the au-
thors propose that a single server can emulate a server
whose bit-label has a Hamming distance of 1 (as those
further apart would require too many extra computa-
tions). For the single dimension that the two servers
would disagree on, the emulating server knows that a
single member of the subset may be switched (that is in-
cluded or excluded), and so the server can send back the
\/n bits corresponding to queries where each index along
the differing dimension is changed. The user then XORs
the results and retrieves the desired bit for similar reasons
as described in the vanilla multi-server scheme. This
change decreases the cost meaningfully at lower values
of d, as it depends on the minimum number of servers
that can emulate other servers without overlapping.

2.3 Block Retrieval

While developing schemes for single bit PIR demon-
strated its feasibility, Chor et al. wanted to also generate
a practical model, so they described how to transform the
single-bit retrieval models into a single-block retrieval
scheme, where each block can represent a record. A sim-
ple transformation that they suggest begins by organizing
the data into an m - n matrix, where each column repre-
sents a block of data. The user can then query for the
i’th bit of a row using one of the above protocols, and the
server returns the results for this query for each row of
data. This gives the user the column of the matrix cor-
responding to the desired block of data. This results in
an asymmetric communication cost, that is as the size of
the blocks increases, the cost from the server to the user
increases, while the reverse direction remains the same.

Overall, Chor et al. provided a robust, initial explo-
ration for utilizing multiple servers to create a PIR sys-
tem, and laid the foundation for information theoretic
PIR.

24 cPIR

The goal of cPIR differs from the above, multi-server
scheme in that instead of providing information theoretic
secrecy, it provides privacy by making it computation-
ally infeasible for a single server to identify the user’s
query, usually through the use of cryptography. Here, we
will examine one style of cPIR that relies on the use of
homomorphic encryption, as it provides an avenue for a
cPIR system that is capable of running faster than the
trivial PIR. The privacy of the following methods can
be easily seen because any values that the database sees
are encrypted, so all elements are handled equally, in the
database’s view.

2.5 Homomorphic Encryption PIR

Before focusing on a specific cPIR system, it is helpful to
understand the generalized case of a cPIR system that re-
lies on homomorphic encryption. This type of encryption
scheme allows for operations to be performed on a ci-
phertext, such that the operations will also be performed
on the underlying message. This message space will be
considered as the group G. For simplicity, it is easier to
discuss G as an additive group, so we can consider the
operation of the group as a sum, the Z-module action as
a multiplication, and the identity element as 0. Ostro-
vsky and Smith [17] present a series of general versions
of PIR systems where any homomorphic cryptoscheme
can be inserted. These protcols share many similarities
to the multi-server schemes presented by Chor et al.

For instance, the initial PIR scheme resembles the two
server scheme described in section 2.1. The user sends n
queries to the server, where n is the number of elements
in the server, and each each i’th query corresponds to
the i’th index of the database. The queries are encrypted
messages using the selected cryptoscheme, where the
query corresponding to the desired index is an encryp-
tion of a random element, g, in G, and all other queries
are encryptions of 0.

For each query, the database can multiply the index
bit with that query, resulting in a ciphertext of O if the
bit is not the desired one. If the query corresponds to
the desired bit, the resulting ciphertext will either be g
or 0 depending on the value of that bit. The server can
then sum all of the queries, which results in the cipher-
text of g only if the desired bit is 1. The database can
then send this back to the user, who can then decrypt it
and compare it against g. This protocol suffers from the
same issue as the aforementioned two-server scheme: it’s
communication cost is the same as the trivial PIR method
because it requires sending n queries to the server.

2.5.1 2-D Database cPIR

In order to improve this cost, a similar extension to the
one proposed in Section 2.2 can be used: instead of view-
ing the database as one long, bit string, it can be imagined
as a square of length /i, where the desired index now re-
sides at some coordinate, (i, j). To retrieve this bit, the
user can perform the query used above along one of the
dimensions. For instance, for each row of the square, the
user sends a query that is again either an encryption of 0
if the row that is being queried does not contain the de-
sired bit, or the encryption of some arbitrary element, g,
if the row does contain the desired element. For each col-
umn of the database, the server can generate a response
using the protocol described (i.e. multiplying each in-
dex bit with the query, and summing these together), and
send back the response to the user, resulting in /n re-

sponses back, one for each column. The user can then
decrypt the response corresponding to the desired col-
umn, and check whether or not the message equals g. If
so, then the user knows the desired bit is 1, otherwise it
is 0. The communication cost for this scheme now be-
comes O(y/n) because /n queries are both sent to and
received from the server.

2.5.2 Alternate 2-D Database cPIR

An improvement can be made on this scheme that holds
similar communication costs for the 2-D representation,
but allows for an externsion for greater communication
efficiency via a d-dimensional represenatation. This
method requires the use of an injective map that can take
some cipher text, and map it to a an array of length /,
whose elements are less than the order of g. [is always
greater than 1 because the order of g is always less than
the size of the message space, which is always less than
the size of the ciphertext space because the encryption
scheme is probabilistic. If / was 1, then there is a guar-
anteed duplicate mapping via the pigeonhole principle.

To start this protocol, instead of sending queries for
only one dimension, queries along both dimensions are
sent, with the same property as above: an encryption of
g if the desired point is along that dimension, otherwise,
of 0. This generates /i queries for each dimension. The
server then processes the query in a similar fashion as
above, where each of the elements are multiplied with
the corresponding query element, and are summed to-
gether along one dimension, resulting in /n elements.
Instead of sending these back to the user, the injective
map is applied to each element, producing an / X y/n ma-
trix. This can be thought of as a new database, and the
same procedure can be applied along the remaining /n
dimension using the relevant queries, ending up with [
elements. Each of these corresponds to g times one of
the / elements of the result of the mapping.

These elements are sent back to the user, who can eas-
ily reconsruct the injective mapping. The inverse map-
ping can be applied to retrieve the value that would have
been sent back in the scheme in Section 2.5.1. The user
then needs to check if the value eqauls g or not to de-
termine the desired bit. The communication cost is now
(2% +/n+1) xk, where k is the length of the queries. This
can be seen because the user has to make /n queries for
each dimension, and the database responds with the [re-
sults of the corresponding injective map.

2.5.3 d-D Database cPIR

With the use of these injective maps, the method can be
extended such that the database can be organized as a d-
dimensional cube with length /7. This is also referred to

as a recursive method. The idea here is that there are a se-
ries of /n queries for each dimension. When the method
described in Section 2.5.1 is used for one of the sets of
queries, the length of the cube along the corresponding
dimension is reduced to 1. The remaining elements cor-
respond to the bits along the remaining dimensions times
the encrypted value of g or 0, depending on whether the
elements were along the desired dimension. The use of
the injective map as described in Section 2.5.2 inflates
the length of this dimension up to /, masking these val-
ues, and creating a new ’database’ with the same number
of dimensions. Then, the same procedure can be applied
to this new database along a different dimension.

After all sets of queries have been applied, the server
is left with a d — 1-dimensional cube with length / that
it sends back to the user. The cube only has d — 1 di-
mensions because the injective map is not applied along
the last dimension. Each element of this returned cube
can be thought of as a resulting segment of the mapping
of a resulting segment of a mapping, etc, of the desired
record. Then, to retrieve the desired record, the user has
to invert the mapping along each dimension in the re-
verse order that the queries were applied (the last applied
injective map needs to be inverted before any of the other
ones). Each mapping was multiplied by the value g, as
the hidden record corresponds to the desired index whose
queries all correspond with g, so the user has to also re-
move this contribution before applying the inverse. The
user is then left with the desired record.

The communication cost of this protocol is now
O(kd~/n +197") because the user sends d+/n of length
k queries to the databse, which returns the the (d —1)-
dimensional cube with sides of length /.

In the following described system, this recursive
scheme is the one that is used.

2.6 XPIR

In PIR, the major goal is to reduce the communication
costs to below that of the trivial solution. However, to
make these methods practical, it is also important to en-
sure that the computational costs do not outweigh the
communication costs, as the major issue in cPIR for
a long time was that the computational overhead out-
weighed the communication benefits. In this section,
I will focus on Aguilar-Melchor et al.’s paper, wherein
they use the cPIR scheme described in Section 2.5.3,
with a homomorphic encryption scheme based on the
ring learning with error (RLWE) problem [3, 11]. Fur-
thermore, they also try to reduce computation costs by
using an efficient Number Theoretic Transform (NTT),
Chinese Remainder Theorem (CRT) repesentation, and
precomputation of costly operations.

2.6.1 The Encryption Scheme

The basis for security in the XPIR scheme is due to the
ring learning with errors (RLWE) problem. For the pur-
pose of this survey, only a high-level overview of this
problem is presented, structured as a game. For further
details, please consult [11]. To begin with, the elements
of this scheme come from a ring of polynomials, R,
whose coefficients are all relative integers modulo ¢, and
any operation performed between polynomials is done so
modulo x + 1, where N is the degree of the polynomial.

The RLWE problem begins by the challenger selecting
a random polynomial, s, and a random ’small’ polyno-
mial, e, from this ring. For simplicity, e, which will rep-
resent the ’error’, is considered small when it has small
integer coefficients. Then the challenger can release one
of two sets of outputs: 1) for each output, a random poly-
nomial, a, is selected from the ring and the operation
b =a-s+e is performed, and (a,b) is the output. 2)
for each output, two random polynomials, a and r are se-
lected from the ring, and (a,r) is output. The adversary
then has to decide which of the two sets of outputs he re-
ceives. The indistinguishability of these two outputs, and
thus its security, is based on the hardness of the shortest
vector problem on ideal lattices.

A public-key encryption scheme that utilizes the hard-
ness of this problem is described in [3], which XPIR uses
in its own implementation, and is briefly described as fol-
lows. It should be noted that when all the e polynomials
are generated, their coefficients are scaled by ¢, the maxi-
mal coefficient of the message. The secret key, sk, is sim-
ply a random polynomial in R,. The public key consists
of two polynomials: pk; is another random polynomial
in Ry, and pky = pky * sk +e. To encrypt a message, a
u and an e are randomly selected from the ring, as well
as an ¢/, whose randomness has a larger variance than
the e for pk;. The ciphertext consists of two parts: an
a= pklxu+eandab=pk2*xu+e +m. To decrypt,
simply compute b — (a*sk) mod ¢. As this paper focuses
on PIR, the analysis of this scheme is left to [3]. Essen-
tially, if Ring-LWE is hard, then this scheme is as well.

2.6.2 The PIR scheme

The cPIR scheme used in this system is the same as that
described in 2.5.3, where the binary representation of the
encryption algorithm takes place of the injective maps.
However, the system has to be adapted to retrieve blocks
of data instead of just single bits. Furthermore, with
this RLWE based encryption scheme, only /j bits can be
stored in a ciphertext at one time, otherwise it is impos-
sible to decrypt correctly [3]. [y is chosen such that the
ratio between g and the elements of e remains greater
than 2. These conditions requires changing only the re-
ply from the server, and the way that the user interprets

the reply.

For the basic case where the server is a linear series
of records, each record would be split up into blocks of
size Iy, resulting in /Iy blocks, where [is the length of
arecord. Then the aforementioned scheme is applied for
each corresponding block: the block is multiplied with
the query, and the corresponding blocks of each record
(e.g. all the first blocks) are summed together, resulting
in /Iy blocks that are sent back to the user. The user can
then retrieve the message by decrypting the blocks and
concatenating them together. This change can then be
easily extended into the cases where the server is struc-
tured as a d-dimensional cube by replacing each response
with this series of blocks.

2.6.3 Optimizations

In order to make the above encryption scheme more effi-
cient, XPIR represents the polynomials using NTT, and
represents integers using CRT, similar to [9]. NTT can
be thought of as the Fast Fourier Transform applied to
polynomials that are members of the ring [1], while CRT
allows numbers that are mod large values to be converted
to and from a series of numbers mod small primes, allow-
ing for quicker computations.

To improve the efficiency of costly modular, multipli-
cations, they use an algorithm attributed to Shoup, and
used in NTL [10, 18]. The basic idea is to precompute
the costly division step when the multiplicand is used
many times, that is for a given xy mod p, where x is
going to remain the same for many such computations,
x' = (x*B)/p is precomputed. To get this division to
work appropriately, it occurs in 128 bits (whereas the in-
tegers themselves are stored in 64 bits), and f3 is a scaling
factor equal to 2%*. During runtime, the quotient of the
division for the modular arithmetic is approximated by
computing Q = x'y/f. This value is shown to be either
the correct quotient or too large by 1 in [10]. To calculate
the modular remainder, xy — Qp mod f is calculated, and
if this is greater than p, p is subtracted from this value.

This algorithm improves the efficiency of these calcu-
lations because it moves the costly division step to a pre-
computation step, so during runtime, all that is needed
is two integer multiplications, a shift, and a condiftional
subtraction. Furthermore, because many of the multipli-
cations performed using this algorithm have an invariant
factor, that is the secret key, public key, or the query el-
emnts, this method allows for substantial speed up.

3 Performance of PIR systems

The main purpose of XPIR was to demonstrate that a fea-
sible cPIR system could be constructed through the use

of the model and optimizations described. To demon-
strate this, Aguilar-Melchor et al. tested data through-
put when using xPIR against two different types of
databases: static databases whose data could be pre-
processed, and dynamic ones whose data could not.
When the database was viewed as one dimensional, their
scheme was 100x faster in the former case, and 50x
faster in the latter. When the database was viewed as
a square, the throughput efficiency dropped by half for
small databases, due to the overhead of the intermediate
"database’. However, as the size of the database grows,
the difference between throughput of the two views de-
creased, until they converged when the databse consisted
of 10,000 records.

While the reorganization of the database does present
some throughput limitations on smaller databases, it’s
main advantage is that the user can start receiving data
quicker after she sends a query, because the communi-
cation cost is lower. Indeed, when the database only
contained 10 files, there was no noticeable difference in
such latency. However, when the database grew to only
100 files, the user would receive the initial response 10x
quicker with the reorganization (0.1s vs 1s when a fiber
connection was simulated). The gap changed to 100x
quicker (Is vs 100s) with a 2-D database when it con-
sisted of 10000 files.

While this does demonstrate the feasibility of these
methods , it should still be noted that the multi-server
schemes still demonstrate better performance over these
cPIR systems, as to be expected. In a comparison of
these two types of schemes, Olumofin and Goldberg de-
mosntrated that Chor’s basic PIR scheme (Section 2.3)
had a 100x improvement of reponse times over the cPIR
scheme that was used [13]. However, this comparison
used an older version of a lattice-based cPIR and was
performed on older hardware, so direct comparison to the
XPIR scheme is difficult. Furthermore, the multi-server
scheme used in this comparison was itself not optimal,
and its performance could be improved by 50x by choos-
ing an appropriate block size for the system based on em-
pirical data as opposed to the communication costs the-
ory [4]. Though, the main point still remains that while
both types of schemes offer performance better than the
trivial case, the multi-server schemes do not suffer from
computational drawbacks as severely as cPIR ones.

4 Hybrid Methods

cPIR methods offer several advantages over multi-server
PIR schemes that are gated behind their computational
costs, so there have been several attempts to combine
these two types of schemes. Devet and Goldberg pro-
pose a scheme that does this in order to reduce the over-
all communication cost by utilizing the efficiency of the

recursion schemes of cPIR systems within the already ef-
ficient multi-server scheme. They present the scheme in
a generalized format for any multi-server PIR and cPIR
combination. Like the individual schemes, the database
can be represented as a d-dimensional cube, where d is
chosen to minimize communication costs. For the first
dimension, the multi-server scheme is used. If commu-
nication costs are found to be minimum when d = 1, then
the result is sent back to the user, and the entire scheme
functions as a multi-server scheme. This ensures that the
set-up performs no worse than the multi-server scheme.
However, if d is greater than 1, the cPIR scheme is re-
cursively applied on each server, as described in Section
2.5.3, to the newly generated block.

In their implementation, Devet and Goldnerg used a
multi-server scheme based on Shamir-secret sharing [7],
as well as a lattice based cPIR system [14], that is now
thought to be broken [12]. As these methods are inci-
dental to the overall hybrid scheme, the full description
is not demonstrated here. By testing their system against
different sized databases, Devet and Goldberg demon-
strate that it can be used with costs no worse than the
multi-server scheme, and improved performance when
records are sufficiently small compared to the size of the
database.

Popcorn takes a different approach to a ’hybrid’
method [8]. This system is designed to deliver me-
dia, such as movies, from a static database, while ad-
hering to content protection policies. Here, the scheme
uses the multi-server scheme described in Section 2.3
to effeciently retrieve encrypted movies from secondary
databases, but, in order to comply with content policies,
it uses XPIR (Section 2.6) to retrieve the keys from a
single primary database. Such a scheme is based on cur-
rent DRM schemes, as it allows efficient distribution of
content, while ensuring that only the original distributor
retains original copies. By delegating most of the work
to the multi-server scheme and only the key distribution
to the cPIR scheme, this system was shown to be a possi-
ble method to implement PIR for this industry, if the size
of the database isn’t too large.

5 Conclusion

As our society’s reliance on retrieving data from other
entitites for work, for pleasure, for life, continues to
grow, so too does the concern for privacy. Since it’s
formalization by Chor et al., the basic PIR scheme has
proven to be a powerful starting point to address this is-
sue. It provides a simple solution with its use of mul-
tiple servers that has been expanded in order to provide
more practical schemes, such as allowing some servers
to not be truthful and retaining privacy in cases where
some servers may collude [7].

Due to recent advances in cryptography, particularly
lattice based schemes, cPIR, once thought to be infeasi-
ble, has become a possibility. This allows for the dis-
tribution of data from a single server, permitting greater
flexibility in setting up PIR schemes, particularly in cases
where owners of a database don’t want to distribute their
content to outside parties. It still remains to be deter-
mined whether current systems are efficient enough to
be used in the real world, and whether further improve-
ments can be made on the lower bounds of their costs.

Scalability still remains an issue with these schemes.
They tend to work well with servers that have small,
stable data, which are often compared to a Netflix-like
database. Unfortunately , there still has yet to be a PIR
system that can scale well to a Youtube-sized one. While
such a system would be impressive, it’s also possible
that using the current schemes to hide the query within a
subset of other queries could be sufficient. After all, to
some people, there may not be much of a differene be-
tween an adversary distinguishing the user’s query from
all 1,000,000,000 possible queries and being able to nar-
row the user’s query to one of 100,000 queries.

While there have been very exciting trends towards
making the simple block retrieval PIR systems more ef-
ficient, in order for them to be truly practical, these
schemes need to be able to work within the current
framework for retrieving records from a database. The
aforementioned schemes have all focused on retrieving
blocks from a simple index-based database. Currently,
relational databases that use SQL to retrieve records in
a more flexible manner are a popular choice, and there
have been attempts to adapt these schemes to ensure pri-
vacy over SQL queries with moderate success [15]. For
these types of databases, a recent breakthrough, function
secret sharing, allows for the construction of highly effi-
cient schemes [2, 20].

With many resources becoming engrained in a digi-
tal setting, PIR may become an important asset to help
maintain user privacy. With each further improvement,
these schemes get closer to becoming truly practical, and
with improved efficiency and less restrictions, it may be-
come a desirable scheme used in modern applications.

References

[1] ARNDT, J. Number theoretic transforms (NTTs). Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011, pp. 535-542.

[2] BOYLE, E., GILBOA, N., AND ISHAIL, Y. Function Secret
Sharing. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015,
pp. 337-367.

[3] BRAKERSKI, Z., AND VAIKUNTANATHAN, V. Fully homomor-
phic encryption from ring-lwe and security for key dependent
messages. In Proceedings of the 31st Annual Conference on Ad-
vances in Cryptology (Berlin, Heidelberg, 2011), CRYPTO’11,
Springer-Verlag, pp. 505-524.

[4]

[5]

[6]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

CAPPOS, J. Avoiding theoretical optimality to efficiently and pri-
vately retrieve security updates, vol. 7859 LNCS of Lecture Notes
in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics). 2013,
pp- 386-394.

CHOR, B., KUSHILEVITZ, E., GOLDREICH, O., AND SUDAN,
M. Private information retrieval. J. ACM 45, 6 (Nov. 1998),
965-981.

D1 CRESCENZO, G., MALKIN, T., AND OSTROVSKY, R. Sin-
gle Database Private Information Retrieval Implies Oblivious
Transfer. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000,
pp. 122-138.

GOLDBERG, I. Improving the robustness of private information
retrieval. In 2007 IEEE Symposium on Security and Privacy (SP
’07) (May 2007), pp. 131-148.

GUPTA, T., CROOKS, N., MULHERN, W., SETTY, S., ALVISI,
L., AND WALFISH, M. Scalable and private media consump-
tion with popcorn. Cryptology ePrint Archive, Report 2015/489,
2015. http://eprint.iacr.org/2015/489.

HALEVI, S., AND SHOUP, V. Design and implementation of a
homomorphic-encryption library.

HARVEY, D. Faster arithmetic for number-theoretic transforms.
Journal of Symbolic Computation 60 (2014), 113 - 119.

LYUBASHEVSKY, V., PEIKERT, C., AND REGEV, O. On ideal
lattices and learning with errors over rings. J. ACM 60, 6 (Nov.
2013), 43:1-43:35.

MELCHOR, C. A., BARRIER, J., FOUSSE, L., AND KILLIJIAN,
M. XPIR : Private information retrieval for everyone. PoPETs
2016, 2 (2016), 155-174.

MELCHOR, C. A., CRESPIN, B., GABORIT, P., JOLIVET, V.,
AND ROUSSEAU, P. High-speed private information retrieval
computation on gpu. In 2008 Second International Conference on
Emerging Security Information, Systems and Technologies (Aug
2008), pp. 263-272.

MELCHOR, C. A., CRESPIN, B., GABORIT, P., JOLIVET, V.,
AND ROUSSEAU, P. High-speed private information retrieval
computation on gpu. In 2008 Second International Conference on
Emerging Security Information, Systems and Technologies (Aug
2008), pp. 263-272.

OLUMOFIN, F., AND GOLDBERG, I. Privacy-preserving queries
over relational databases. In Proceedings of the 10th Interna-
tional Conference on Privacy Enhancing Technologies (Berlin,
Heidelberg, 2010), PETS’ 10, Springer-Verlag, pp. 75-92.

OLUMOFIN, F., AND GOLDBERG, I. Revisiting the computa-
tional practicality of private information retrieval. In Proceedings
of the 15th International Conference on Financial Cryptography
and Data Security (Berlin, Heidelberg, 2012), FC’11, Springer-
Verlag, pp. 158-172.

OSTROVSKY, R., AND SKEITH, W. E. A Survey of Single-
Database Private Information Retrieval: Techniques and Appli-
cations. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007,
pp. 393-411.

SHOUP, V. NTL: A library for doing number theory.
http://www.shoup.net/ntl, 2003.

SION, R., AND CARBUNAR, B. On the practicality of private
information retrieval. In Proceedings of the Network and Dis-
tributed System Security Symposium, NDSS 2007, San Diego,
California, USA, 28th February - 2nd March 2007 (2007), The
Internet Society.

WANG, F., YUN, C., GOLDWASSER, S., VAIKUNTANATHAN,
V., AND ZAHARIA, M. Splinter: Practical private queries on
public data. In /4th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17) (Boston, MA, 2017),
USENIX Association, pp. 299-313.

