
Factoring N = p2q

Nathan Manohar Ben Fisch

Abstract

We discuss the problem of factoring N = p2q and survey

some approaches. We then present a specialized factor-

ing algorithm that runs in time Õ(q0.31), which is com-

parable to the runtime Õ(p1/3) of the factoring algorithm

for integers of the form N = prq presented in [1]. We

then survey the factoring algorithm of [1] and discuss

the number of advice bits needed for it to run in poly-

nomial time. Furthermore, we discuss the possibility of

constructing cryptographic primitives from the assump-

tion that p2q is hard to factor. We present our attempt at

constructing key agreement and discuss the difficulties

of building this primitive from the hardness of factoring

p2q.

1 Introduction and Problem Overview

The problem of factoring p2q is of considerable inter-

est in cryptography. Various encryption schemes, such

as the EPOC cryptosystem [7] and the ESIGN digi-

tal signature scheme [4], are based on the assumption

that this problem is hard to solve. Furthermore, Taka-

gai [9] showed that RSA decryption can be made much

faster when moduli of the form N = prq or, in particular,

N = p2q are used. A natural question to ask is whether

factoring p2q is as hard as factoring a general RSA mod-

ulus N = pq. In particular, is there a way to exploit the

fact that N is of the form p2q that could lead to an im-

provement in factoring moduli of this form?

One observation is that given N = p2q, it is easy to

learn if q is a quadratic residue modulo some prime ℓ.
To see this, we first note that the Jacobi symbol

(

ℓ
N

)

is

computable in polynomial time via repeated application

of the law of quadratic reciprocity. Additionally, since

the Jacobi symbol is a multiplicative function, it follows

that
(

ℓ

N

)

=

(

ℓ

p2q

)

=

(

ℓ

p2

)(

ℓ

q

)

=

(

ℓ

p

)2(ℓ

q

)

.

Since gcd(ℓ, p) = 1 (for ℓ 6= p), it follows that the Leg-

endre symbol
(

ℓ
p

)

=±1 and therefore

(

ℓ

N

)

=

(

ℓ

q

)

.

By the law of quadratic reciprocity, it follows that

(

ℓ

q

)

(q

ℓ

)

= (−1)
ℓ−1

2
q−1

2 ,

and so
(

q
ℓ

)

can be computed in polynomial time.

One approach to factoring p2q is to attempt to lever-

age the information about q’s quadratic residuosity to

recover q. In Section 3, we present a Õ(q0.31) time

factoring algorithm for p2q that follows this approach.

Furthermore, we discuss how additional constraints (the

quadratic residuosity of q modulo additional primes ℓi)

reduces the number of possible solutions for q in some

range.

In Section 4, we survey a specialized factoring algo-

rithm for numbers of the form prq due to Boneh, Dur-

fee, and Howgrave-Graham [1]. They show that when

given a good enough approximation P to p, it is possi-

ble to recover p in polynomial time by constructing a

polynomial f with small coefficients that has x = p−P

as a root. If the coefficients of the polynomial are suf-

ficiently small and the root x is also sufficiently small,

they show that there will be no wrap-around and x will

be a root of f over the integers, which can be recovered

in polynomial time. The required approximation P to p

is found via brute force and this process determines the

running time of the algorithm since the rest of it runs

in polynomial time. If the required approximation P to

p can be found in polynomial time, then this algorithm

runs in polynomial time, which [1] shows to be the case

when r = Ω(log p). For factoring p2q, this algorithm has

a running time of Õ(p1/3), which is slightly worse than

the time complexity of our factoring algorithm (assum-

ing the factors p and q are of roughly the same size).

Additionally, this algorithm requires
log p

3
+O(1) advice

bits to factor p2q in polynomial time [1].

These two algorithms provide interesting approaches

to factoring p2q and could potentially be improved to

reduce their running times. However, these two algo-

rithms are currently eclipsed asymptotically by general

purpose factoring algorithms such as the Elliptic Curve

Method [6] and the Number Field Sieve [8].

Since factoring p2q appears to be quite difficult, we

also approach this problem in the other direction where

we assume it is hard to solve and try to construct cryp-

tographic primitives from this assumption. In Section 5,

we show our attempt at constructing key agreement from

this assumption and discuss the difficulties of making

such a construction work.

We conclude by discussing the variety of open prob-

lems related to factoring p2q and describe directions for

future work.

2 One Approach

One approach to factoring p2q is to attempt to use the in-

formation about q’s quadratic residuosity modulo many

primes ℓi to construct a polynomial that must have q as

a small root and then determine this root using Copper-

smith’s method [2].

As discussed previously, it is possible given N = p2q

and some prime ℓ to compute
(

q
ℓ

)

in polynomial time.

Using this information, we can construct tables Tℓi
for

primes ℓi that list the possible values of q mod ℓi. Since

there are
ℓi−1

2
quadratic residues and nonresidues mod-

ulo ℓi, the size of Tℓi
will be ℓi−1

2
. Equivalently, let

bi =
(

q
ℓi

)

. Then, the table Tℓi
contains the roots of the

polynomial (x(ℓi−1)/2 − bi) over Zℓi
. The question of

factoring p2q has now been reduced to the question of

whether q can be efficiently reconstructed given informa-

tion about whether or not q is a quadratic residue modulo

primes for a fixed sequence of primes.

Observe that for each prime ℓi for which we have a

corresponding table Tℓi
, we can construct the polynomial

fℓi
(x) = ∏

a∈Tℓi

(x− a) mod ℓi.

Then, using the Chinese remainder theorem, we can

construct the polynomial f mod ∏i ℓi obtained by apply-

ing to the Chinese remainder theorem term-wise to the

coefficients of each of the fℓi
’s. Note that since q is a root

of all the fℓi
’s, it follows that q is a root of f . However, q

is not a sufficiently small root of f for Coppersmith’s al-

gorithm to determine it. In particular, if f is a polynomial

of degree d modulo L, Coppersmith’s algorithm will only

find roots that are < L1/d . However, if the ℓi’s are the first

n primes, then ∏i ℓi ≈ en. Since we must have ∏i ℓi > q,

it follows that we need n > lnq. Additionally, we note

that the degree of f will be the size of the largest table,

which will be ℓn−1
2

. Since the size of the largest prime is

≈ n lnn, it follows that L1/d will be approximately

e2n/n lnn = e2/ lnn = eO(1/ loglogq) << q,

and so Coppersmith’s method will not be able to deter-

mine q.

An immediate observation is that if the degree of f

was smaller (was n1−ε instead of ≈ n lnn), then Cop-

persmith’s method would be sufficient to determine q.

In this case, we would have that L1/d is ≈ enε
> q for

n = O(log1/ε q). However, there does not seem to be

any way to reduce the degree using these tables alone.

In particular, since the size of the tables is O(n lnn), f

must necessarily have degree O(n lnn) in order to cap-

ture all the possible values of q. If some extra informa-

tion about q unrelated to the quadratic residuosity of q

modulo primes could be gathered, this could potentially

be leveraged to reduce the size of the tables.

3 Attacks Leveraging Quadratic Reci-

procity

Given that Coppersmith’s method will not work for find-

ing sufficiently many roots (i.e., more than constant size

roots) of a polynomial of degree O(log(M)) over M, we

need to search for other approaches of leveraging the in-

formation gained from the quadratic reciprocity of q mod

small primes in order to factor p2q. Define K = p1 · · · pk

such that q < K. Define M = p1 · · · pm for m > k. As be-

fore, let F be the unique polynomial mod M that is equiv-

alent to fi = (x(pi−1)/2 − bi) over Zpi
where bi =

(

q
pi

)

.

Let Ti be the table of roots of fi. The first question is

whether we can even hope that there will be a small (i.e.

polynomial) number of roots of F that are less than K,

otherwise there would probably be no hope of recover-

ing q. When n = k it is easy to see that there are an ex-

ponential number of roots in [0,K) because any k-wise

combination of the roots of fi for each i corresponds

to a unique integer in Zk that is a root of F . This to-

tal number of roots is precisely Πk
i=1(pi − 1)/2 ≈ K/2k.

Although the number of solutions for q remaining is still

exponential, the information about q that we got from ex-

amining the roots of f1, ..., fk reduced the solution space

by a factor 2k. Heuristically, we would hope that each

polynomial fi for i > k would continue to reduce the so-

lution space by a factor 2 so that we would only need

n = O(k) = O(log(q)) polynomials to reduce the num-

ber of solutions to a constant.

2

3.1 Analyzing number of solutions.

Despite the intuition outlined above, proving that the

number of solutions is reduced to a constant given the

constraints imposed by sufficiently many reduced poly-

nomials seems tricky. As a first step we would want

to show that the number of integers in [0,K) that are in

T1,...,Tk+1 is a constant fraction smaller than the number

of integers in [0,K) that are in T1, ...,Tk. However, this

is not in general true for arbitrary sets Ti of size pi/2.

For example, consider K = p1, i.e. k = 1, let T1 contain

[0, p1/2) and let T2 contain [0, p2/2). Then T2 doesn’t

eliminate any solutions that just satisfy T1. The number

of integers in [0,K) that are in both T1 and T2 is precisely

p1/2.

Assuming even distribution of roots. Suppose that

the roots of F are evenly distributed over ZM . Let

n = poly(k), so n >> k. The total number of roots of

F is M/2m. Assuming an even distribution of roots, the

fraction of these roots that fall in the range [0,K) would

be approximately (M/2m) · (K/N) = K/2m ≈ ek/2m =
ek−log(e)m = e−poly(k), which is negligible for sufficiently

large k. Therefore, if q ∈ [0,K) is a root of F (by con-

struction), it is likely to be the only root in this range.

More precisely, if we assume that for a randomly chosen

modulus of the form N = p2q the roots of F are randomly

distributed then in expectation q is the unique root of F in

the range [0,K), and the probability that there are a non-

polynomial (or even non-constant) number of additional

roots in this range is negligible by Chernoff bounds.

3.2 An Õ(q0.31) attack

Note that if we set K ≈ q as described above we already

obtain an attack on factoring N = p2q in time Õ(q0.31),
which is comparable to the Õ(q1/3) attack of [1]. We

know that q can be efficiently derived using CRT from

some k-wise combination of the roots of the polynomials

f1, ..., fk . The total number of combinations is K/2k ≈
ek/2k = ek(1−ln(2)) = K1−ln(2) ≈ q0.30685. Thus we can

try all combinations in time Õ(q0.31).

4 Factoring N = prq

Due to prevalence of moduli of the form N = prq in cryp-

tography, researchers have studied the difficulty of fac-

toring moduli of this special form. In [1], Boneh, Dur-

fee, and Howgrave-Graham present a method for fac-

toring integers of the form N = prq that utilizes tech-

niques introduced by Coppersmith in [3]. However, this

method only runs in polynomial time (in logN) when r =
Ω(log p). When r = 2, this method runs in time Õ(p1/3),
which is slower than the Elliptic Curve Method [6] or

the Number Field Sieve [8]. When r ≈ √
log p, this

lattice-based factoring method begins to be asymptoti-

cally faster than the Elliptic Curve Method and the Num-

ber Field Sieve. This method is particularly interest-

ing because it runs in polynomial time if it is provided

with a good enough approximation to p. For the case of

N = p2q, this lattice-based method will factor N in poly-

nomial time given the most significant third of the bits

of p. Since this method has a similar asymptotic running

time to our factoring algorithm, we present a sketch of

the algorithm here for completeness.

For simplicity, we will only describe the algorithm for

the case r = 2, but the process described below easily

extends to larger r. Additionally, we will try to follow

the notation used in [1]. At a high level, the algorithm

is based on the following idea. Suppose that some rough

approximation P to p is known. In particular, suppose

|P− p| < X for some X to be determined. Then, if one

considers the polynomial

f (x) = (P+ x)2,

it follows that the point x0 = p−P is a root of f (x) mod

p2. Furthermore, since P was a good approximation to

p, it follows that |x0| < X . So, the problem has been

reduced to finding a small root of f (x) mod p2. It is im-

portant to point out here that the modulus in question, p2

is unknown. However, knowing the modulus becomes

unnecessary given the following fact due to Howgrave-

Graham: Suppose that f (x) is a degree d polynomial

over the integers. Suppose further that f (x0)≡ 0 mod ps

for some small root |x0|< X and that || f (xX)||< ps/
√

d,

where || f || is defined as the ℓ2 norm of its coefficients

vector. Then, f (x0) = 0 in Z.

The above essentially states that if we can construct a

polynomial with sufficiently small coefficients, then x0

will be a root over the integers, which can be found in

polynomial time. We note that knowing the modulus p2

or ps is unnecessary. All that we need to be able to do

is to construct a polynomial that has small coefficients

when evaluated on xX while maintaining the fact that the

polynomial has a root at x0 modulo ps.

To accomplish this, [1] sets s = 2m for some parame-

ter m to be determined and takes a series of polynomials

gi,k(x) that are constructed so that x0 = p−P is a root

modulo p2m. They then construct a lattice L whose ba-

sis is the set of coefficients vectors of the gi,k(xX)’s. Us-

ing the LLL algorithm [5], it is then possible to find a

short vector v ∈ L . This short vector v can be thought

of as the coefficients vector of a new polynomial h(xX).
However, since v ∈ L , h(x) can be expressed as a linear

combination of the gi,k’s and since gi,k(x0)≡ 0 mod p2m

for all gi,k, it follows that h(x0) ≡ 0 mod p2m. There-

fore as stated previously (provided that ||h(xX)|| is suffi-

ciently small), x0 is a root of h over the integers and can

3

therefore be found in polynomial time. Since x0 = p−P

and P is public, it is then possible to recover p and factor

N = p2q.

More specifically, the polynomials gi,k are defined as

gi,k(x) = Nm−kxi f k(x)

where f k(x) = (P+ x)2k. We note immediately that

gi,k(x0) = (p2q)m−kxi(P+ p−P)2k

= p2mqm−kxi

≡ 0 mod p2m

and so x0 is a root of gi,k mod p2m for all i,k.

The LLL algorithm guarantees that when given a full

rank lattice L of dimension d as input, it will output a

lattice vector v such that

||v|| ≤ 2d/2 det(L)1/d

where L is the matrix whose column vectors form a ba-

sis of L . The lattice L is instantiated to be the lattice

whose basis vectors are the coefficients vectors of the

polynomials gi,k(xX) for i = 0,1 and k = 0, . . . ,m−1 and

the coefficient vectors of the polynomials g j,m(xX) for

j = 0, . . . ,d − 2m− 1. L is a d-dimensional lattice and

the matrix L corresponding to this lattice is triangular, so

its determinant can be easily computed as the product of

the diagonal entries. After some calculation, [1] deter-

mines that

det(L)< Nm(m+1)Xd2/2

and therefore, the LLL algorithm will output a vector v

satisfying

||v|| ≤ 2d/2Nm(m+1)/dXd/2.

Viewing v as the coefficients vector of some polynomial

h(xX), we see that the algorithm can determine p pro-

vided

||h(xX)||< p2m

√
d
.

It remains to determine optimal values for the parameters

X ,m,d. It can be shown that the optimal value for m is

m = ⌊d

3
− 1

2
⌋.

The algorithm will then succeed provided that

X < p2/3−4/d.

Since the LLL algorithm runs in time polynomial in

the dimension d of the lattice [5], we can choose d =
O(log p) and still have one iteration of the factoring al-

gorithm run in polynomial time.

All that remains is to determine P. This can be done

by iterating through all possible values of the most sig-

nificant bits of p, where the number of bits we need to

guess is determined by the precision of the approxima-

tion required. For factoring N = p2q, we need to cor-

rectly guess one third of the bits of p (plus an addi-

tional constant number of bits which can be brute forced

at each step without increasing the asymptotic running

time). There are p1/3 possibilities for the most signif-

icant third of the bits of p, and so it follows that this

algorithm factors p2q in time Õ(p1/3).
A interesting property of this algorithm is that it can be

easily made to run in polynomial time given a sufficient

number of advice bits. In particular, given a close enough

approximation P to p, the algorithm can determine p in

polynomial time. For factoring p2q, the most significant

third of the bits of p or
log p

3
advice bits are needed for

the algorithm to run in polynomial time.

5 Turning the Problem Around

Suppose that it is indeed (classically) hard to factor p2q.

Does that imply the hardness of some problem related to

finding small roots of polynomials of poly degree over

a super smooth modulus N? Can we build some useful

crypto primitives from this new problem? The hope is

that this problem would be classically hard by reduction

to factoring p2q, and also might be quantum hard. While

there are known efficient quantum algorithms for factor-

ing there might not be efficient quantum algorithms for

finding roots of polynomials over composite moduli.

Candidate problem. Given M = p1 · · · pm where pi is

the ith prime, a bound B = M1−ε for some ε < 1, and

a polynomial P of degree O(log(M) over ZM , output a

root of P in the range [0,B) or ⊥ if there is no root.

The hardness of this problem (for certain worst case

choices of P,ε) is implied by the hardness of factoring

N = p2q for randomly chosen λ -bit p,q under the evenly

distributed roots assumption described above. The re-

duction is as follows. Given a random instance of

N = p2q where q < N1/3, let k ≈ ln(N1/3) and m = ck

for c = O(poly(λ). Form the polynomial F as above,

i.e. the unique polynomial mod M that is equivalent

to fi = (x(pi−1)/2 − bi) over Zpi
where bi =

(

q
pi

)

for

M = p1 · · · pm. Let B = ek, and note that B ≈ em−k =
em(1−1/c) = M1−1/c = M1−ε for ε = 1/poly(λ). F is a

polynomial of degree (m− 1/2) = O(log(M)) over ZM .

Thus we have constructed an instance of the candidate

problem, from which we obtain a root x of F in the range

[0,B). We know that q is a root of F , and by the assump-

tion on the distribution of roots and a simple application

4

of Markov’s inequality, the probability that there is more

than 1 root in [0,B) is less than e−poly(λ), i.e. negligible

in λ . Thus, x = q with overwhelming probability.

Building key exchange? We were not able to construct

key exchange from the candidate problem, but we sketch

here an idea. The construction needs to leverage the

hardness of finding small roots of a polynomial P over

the exponential super-smooth modulus M even though it

is obviously easy to find some (possibly large) root of P

by finding a root of P mod pi for each i and using CRT.

Any construction where the shared secret can be derived

from any root of a polynomial P will not work, as anyone

would be able to obtain the shared secret.

Suppose there are two parties Alice and Bob. Alice

can construct a polynomial P of degree O(log(M) over

ZM with a small root α < B that is her secret, and Bob

can construct a polynomial Q also of degree O(log(M))
over ZM with a small root β < B that is his secret. Now

Bob and Alice both know small (yet distinct) roots of the

polynomial P ·Q, which is also of degree O(log(M)) over

ZM , and we assume it is hard for anyone else to compute

a small root of P ·Q. Is there a way for Bob and Alice

to derive a shared secret that can be computed just from

knowledge of any small root of P ·Q? It is important that

the derivation would fail with a large root.

A broken idea. Here is another simple idea that

doesn’t work, but may inspire more ideas. The secret

to be agreed upon will lie in [0,B), which is still expo-

nentially large but small with respect to the modulus M.

Alice selects P with small root α < B as above and sends

P to Bob. Bob chooses a secret s ∈ [0,B), samples a

random masking polynomial R, samples a random mask-

ing value D ∈ [0,B), and sends the polynomial H(x) =
P(x) ·Q(x)+Dx+ sB2 back to Alice. Using α , Alice can

compute H(α) = (Dα) + sB2. Since Dα/B2 < 1 over

the integers, Alice divides (Dα)+ sB2/B2 = s+Dα/B2

(over the rationals, not ZM!) and rounds down to the

nearest integer to recover s

An adversary that has a large root α∗ > B2 wouldn’t

be able to recover s naively because H(α∗)/B2 =
D(α∗/B2) + s > D+ s for unknown D ∈ [0,B), which

hides s. However, there is an attack. Since P is public

the attacker can reduce P mod pi for each i. Since Zpi

is a field for each pi, by the division theorem for poly-

nomials over an integral domain there is a unique Q,R
in Zpi

[x] such that H = PQ+R with deg(R)< P, hence

the attacker recovers R =Dx+sB2 mod pi for each i, and

can thus learn sB2 mod pi for each i and recover sB2 mod

M using CRT.

Connection to Short Integer Solution? SIS (short in-

teger solution) is a well known lattice problem that is

conjectured to be hard, and reduces to LWE. Given a lat-

tice basis B, the SIS problem is to find a vector x of low

norm such that Bx = 0. Roughly, SIS reduces to LWE

because if it easy to find a small x such that Bx = 0 then

one can distinguish Bs+ e from random r by computing

(Bs+ e)x = eT x, which will have low norm as opposed

to rT x. We do not know of a key exchange constructed

directly from SIS, but constructing key exchange from

SIS and our candidate problem seem similar in nature.

6 Conclusions and Open Problems

We described our attempts at factoring p2q and building

cryptographic primitives from the hardness of factoring

p2q. However, this problem proved to be extremely dif-

ficult, and as a result, numerous open problems remain.

The most obvious unresolved question is can p2q be fac-

tored classically in polynomial time? However, showing

this is extremely ambitious and it would be interesting

to even construct a specialized factoring algorithm for

N = p2q that performs better asymptotically than ECM

or the Number Field Sieve. We attempted to use the in-

formation extracted from N about the quadratic residuos-

ity of q modulo primes ℓi to speed up the running time of

the Quadratic Sieve or the Number Field Sieve, but were

unable to utilize this additional information in a mean-

ingful manner. However, it seems like this information

should be able to be leveraged in some way.

Additionally, it would be interesting to study the num-

ber of advice bits needed to factor p2q in polynomial

time and see if it is possible to do better than the
log p

3
+

O(1) bits needed in [1]. Another direction would be to

try to say something about how additional constraints re-

duce the possible number of solutions for q in a given

range. Alternatively, one could try to prove something

about the distribution of the roots of a polynomial f that

has been derived from a modulus N = p2q in the manner

described previously.

On the other hand, one could try to build cryptographic

primitives assuming the hardness of factoring p2q. In

particular, is it possible to build key exchange from the

candidate problem described above, namely that it is hard

to find a small root of a polynomial over a smooth modu-

lus. We can reduce this problem to the question of build-

ing key exchange between two parties, each of which

knows some small root to a public polynomial. It seems

like this should be enough to build key exchange, but as

shown previously, our attempted construction failed be-

cause the smooth modulus is easily factored and the se-

cret could be recovered by determining its value modulo

the prime factors of the smooth modulus and then apply-

ing CRT.

5

References

[1] BONEH, D., DURFEE, G., AND HOWGRAVE-GRAHAM, N. Fac-

toring N = p r q for Large r. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1999, pp. 326–337.

[2] COPPERSMITH, D. Finding a small root of a univariate modular

equation. In Proceedings of the 15th Annual International Con-

ference on Theory and Application of Cryptographic Techniques

(Berlin, Heidelberg, 1996), EUROCRYPT’96, Springer-Verlag,

pp. 155–165.

[3] COPPERSMITH, D. Small solutions to polynomial equations, and

low exponent rsa vulnerabilities. Journal of Cryptology 10, 4

(1997), 233–260.

[4] FUJIOKA, A., OKAMOTO, T., AND MIYAGUCHI, S. ESIGN:

An Efficient Digital Signature Implementation for Smart Cards.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, pp. 446–

457.

[5] LENSTRA, A. K., LENSTRA, H. W., AND LOVÁSZ, L. Factoring

polynomials with rational coefficients. Mathematische Annalen

261, 4 (1982), 515–534.

[6] LENSTRA, H. W. Factoring integers with elliptic curves. Annals

of Mathematics 126, 3 (1987), 649–673.

[7] OKAMOTO, T., UCHIYAMA, S., AND FUJISAKI, E. Epoc: Effi-

cient probabilistic public-key encryption (submission to p1363a).

[8] POMERANCE, C. A tale of two sieves. Notices Amer. Math. Soc

43 (1996), 1473–1485.

[9] TAKAGI, T. Fast rsa-type cryptosystem modulo pkq. In Proceed-

ings of the 18th Annual International Cryptology Conference on

Advances in Cryptology (London, UK, UK, 1998), CRYPTO ’98,

Springer-Verlag, pp. 318–326.

6

	Introduction and Problem Overview
	One Approach
	Attacks Leveraging Quadratic Reciprocity
	Analyzing number of solutions.
	An (q0.31) attack

	Factoring N = prq
	Turning the Problem Around
	Conclusions and Open Problems

