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Abstract

We survey three pseudorandom function constructions —
specifically the Goldreich-Goldwasser-Micali construc-
tion [3], the Naor-Reingold construction from pseu-
dorandom synthesizers [4], and the canonical Naor-
Reingold number-theoretic constructions from the DDH
assumption and the assumption that factoring Blum inte-
gers is hard [5].

1 Introduction

Pseudorandom functions (PRFs) are a key cryptographic
primitive, used in private-key exchange and authentica-
tion, among other areas. Informally, a PRF f is a deter-
ministic algorithm that takes in a string x and for some
random length-d string k, outputs f(k,x), where f(k,x)
‘looks’ random. However, what does it mean to ‘look’
random? Here we cannot simply consider individual
functions — the definition of a PRF relies on distributions
over functions, called function ensembles. Let F be a
function ensemble with functions in the set {0,1}" —
{0,1}", and let R be the function ensemble distributed
uniformly over all functions in the set {0, 1}" — {0, 1}".
Then F is a pseudorandom function ensemble, if there
is no polynomial time algorithm, that, given the abil-
ity to query values on a function f’, can determine with
non-negligible advantage whether f’ was drawn from F
or from R. We define a pseudorandom number gen-
erator (PRG) in a similar way: A PRG G : {0,1}¢ —
{0,1}" is a deterministic algorithm that takes in a seed
s €{0,1}¢ and outputs a string G(s) € {0,1}" such that
no polynomial-time algorithm can distinguish between a
set of strings drawn at random from {0, 1}" and a set of
strings generated by drawing a set of random seeds from
{0,1}¢ and applying the PRG G to each seed.

Present in all of these discussions is the need for effi-
ciency. In addition to the pseudorandom requirements,
PRFs need to be efficient to compute and evaluate in

practice. This means that we want to minimize the de-
scription length of our functions, which we define as
the number of bits needed to define the function outputs,
while also choosing functions that can be computed effi-
ciently.

2 Random Strings to Random Functions

The key insight that Goldreich, Goldwasser, and Mi-
cali demonstrate in [3] is that the pseudorandom string
output from a PRG can be used to create pseudoran-
dom functions. The construction works as follows:
Let G: {0,1}¢ — {0,1}* be a PRG and let G(x) =
Go(x)||G1(x), where we simply mean that Go(x) is the
first half of the output and G;(x) is the second half.
Now imagine x as the root of a tree structure, where
Go(x) is the left-child of x, and Gj(x) is the right-
child. We can recurse on this structure by applying G
to either of the children, that is, computing G(Go(x)) =
Go(Go(x))||G1(Gp(x)). In this way, we can build a tree
structure of whatever size we please. On a query g, we
compute the function f(g) by traversing the tree struc-
ture via the bits of g. We apply G to the value at our
given node, and ‘move’ left or right, that is, we compute
on the first or second half of the output G(x) depending
on the next bit of ¢: if the next bit is a 0, we compute
on the first half, if the next bit is a 1, we compute on the
second half. When we reach a leaf node, that is, when
we have iterated through all the bits of g, we output the
value computed at the leaf node. Observe that the time
it takes to compute f(g) is |g| - ty, where #, is the time
it takes to compute G on a string. Additionally, for ev-
ery input ¢, because G is deterministic, f(g) is consistent
across multiply queries.

2.1 Security

How can we prove that the above construction is pseu-
dorandom? The pseudorandomness of our PRF reduces



to the pseudorandomness of our PRG. The construction
assumes that the PRG G outputs strings that are compu-
tationally indistinguishable from random. Thus, if there
were some algorithm A that could distinguish the out-
put of the PRF from random with non-negligible advan-
tage, we could use A to break the pseudorandomness of
G. Thus, assuming that PRGs exist, this construction is
a secure PRF.

3 Pseudorandom Synthesizers

While the GGM construction relies on PRGs to construct
PRFs, other cryptographic primitives can also be used
to construct PRFs. In [4], Naor and Reingold intro-
duce the pseudorandom synthesizer, which they use to
give a parallel and more efficient construction for PRFs.
At a high level, a pseudorandom synthesizer is a func-
tion that is pseudorandom even on a sequence of queries
with some dependencies. We formally define a collec-
tion of pseudorandom synthesizers S = {S,} as follows:
Let X = (x1,x2,...,x) and ¥ = (y1,y2,...ym) be two se-
quences of polynomially-many uniformly-distributed n-
bit strings. Each synthesizer S, € S operates on pairs,
and for every pair (x;,y;), S> returns S»(x;,y;). We define
Cs,(X,Y) to be the k x m matrix where cell (i, j) holds
S2(xi,y;). If S is a collection of pseudorandom synthe-
sizers, then for S, chosen randomly from S, there is no
probabilistic polynomial time algorithm that can distin-
guish between the matrix Cs,(X,Y) and a k x m matrix
of randomly-chosen [/-bit strings with non-negligible ad-
vantage. Additionally, unlike PRGs, the output of a syn-
thesizer is not required to be larger than its input.

As a note, it’s important to see that not all PRGs
are synthesizers. For example, let’s consider a PRG G,
where on input s = x oy, we have that G(s) = G(xoy) =
G'(x) oy, where G’ is some other PRG. The matrix
Cs(X,Y) would not look uniform at all — for example,
a %-fraetion of the strings in the matrix would have the
suffix y;. In this way, the requirements on synthesizers
are stronger than they are for PRGs.

An extension of the synthesizer is the k-dimensional
synthesizer, an efficient function on k inputs. A col-
lection of k-dimensional synthesizers S = {S;} is pseu-
dorandom if, given polynomially-many uniformly dis-
tributed values for each input, which we can represent as
k sequences of length m (X;,Xz,...Xy), and for Sy drawn
randomly from S, the matrix of outputs Sy (x1,x2,...,x%)
on all possible combinations of inputs (x| € X,x; €
Xz, ...x; € X;) is computationally indistinguishable from
random.

3.1 Parallel PRF Construction

So how do we build PRFs from synthesizers? The
key idea is to use a recursive synthesizer, that, in
each phase, halves the length of its input. Given
a synthesizer S, : {0,1}" x {0,1}" — {0,1}"
we define the 2k-dimensional synthesizer Sy; as
follows, where S, takes a sequence of 2k n-
bit strings as input: Sok (X1, X0, e Xop—1,X0k) =
Sk(Sz(xl,XQ),Sz(X3,X4),...Sz(ka,hXQk)). Us-
ing this definition, for any n, we can compute
S, (x1,%2,...,x,) using [logn] levels of recursion.
In order to describe this operation for a specific
synthesizer S, in the collection and a specific se-
quence of inputs X = (x1,X2,..X0%—1,X%%), We€
define the squeeze of X with respect to S, as
S0s,(X) = (Sa(x1,x2),82(x3,%4),...82 (x2x—1,%2%))-
The construction Naor and Reingold give uses a col-
lection of pseudorandom n-dimensional synthesizers
S = {S,}, where, for some ordering of the synthesizers
in the collection S, we call the j-th synthesizer S;.
Given these definitions, we can now define the con-
struction for an ensemble F of PRFs f: {0,1}" —
{0,1}". The PRF requires a pair of keys (d,k), where
a= (alﬁo,alyl,ag’o,a;l,...7a,,,07an71) is a sequence of
2n n-bit strings, and k = (k1,k2, ..., K[jogn)) is a list of
logn indices into S, that is, using the elements of k
to index into S, k defines a sequence of [logn] syn-
thesizers (S*1,5%2... $¥oen),  This pair of keys then
fully defines the PRF f.». On input x, f;3(x) =
SO, (SQSkZ("'SQSkﬂogn] ({aiy,---Gnyx,}))). In order to
understand this definition, let’s first examine the se-
quence {aj y,...dy x, }. Here the bits of x determine which
n strings in d synthesizer Sknoznl will operate on in the
first phase of recursion — if the i-th bit of x is a 0, then
string a; o is included, whereas if the i-th bit of x is a 1,
string g; 1 is included. Then in the first phase of the recur-
sion, we compute SO iy, ({a1y,---@nyx, }), squeezing a
list of n strings to a list of 7 strings. In each subsequent

phase, the next synthesizer defined by k squeezes the out-
put of its predecessor. Since we begin with # strings, and
each phase halves the number of strings, we compute
fa}(x) after [logn| phases. It is important to note that
the construction as a whole is an n-dimensional synthe-
sizer. This point is key — each input x selects a different
combination of strings from d, and so by the definition of
an n-dimensional synthesizer, the output of the function
on a polynomial number of inputs x is indistinguishable
from random.

It may be helpful to visualize this process for comput-
ing fﬁj(x) as a binary tree, where the leaves are the list
of strings d, and there are edges from the leaves ‘chosen’
by x to a ‘parent’ string in the next level. That is, there



are edges from aj x, and as , to SKTlogn] (a1x,,02,%,). We
continue to build the tree from the bottom all the way
up to the root, by adding edges from every two strings x
and y that S% operates on to the output string S%i (x,y).
While this binary tree construction may seem very sim-
ilar to the GGM construction, there are some important
differences. First, in the GGM construction, the strings
at each ‘node’ in the tree were completely determined
by the PRG key, and the input x simply chose a specific
leaf node in the tree. In contrast, in this construction, the
strings at each ‘node‘ are completely determined by the
input x itself. More importantly, perhaps, the tree in the
GGM construction has depth n, while this tree has depth
logn, making this construction far more efficient.

3.2 Efficiency

In order to discuss the efficiency of the construction in
more detail, recall that the complexity class NC' is the
class of all problems that can be computed in O(log'n)
time on poly(n) parallel machines. As described in the
binary tree representation, the construction has only logn
levels. Therefore, if the synthesizers for each phase are
computable in NC', then each function f in the family
of PRFs defined by this construction is computable in
Nci+1 )

Additionally, the construction has a neat incremental
quality: if we have already computed f(x), for any y that
differs from x in only 1 bit, we can compute f(y) with
only logn calls to pseudorandom synthesizers. We can
see why this is true by examining the binary tree repre-
sentation — flipping one bit of the input will only change
the nodes that lie on the path from the leaf node corre-
sponding to the flipped bit to the root, which includes
only logn + 1 nodes. Note that the GGM construction
does not have such a property — a flipped bit may result
in ®(n) additional calls to a PRG.

3.3 Security

The proof idea for the security of the construction fol-
lows a hybrid argument. Let F be the ensemble of PRFs
f:{0,1}" — {0,1}" defined by the construction. Let
R be the ensemble of random functions R, : {0,1}"* —
{0,1}". For each level j of recursion, we define H/ as
the distribution of functions that are computed by start-
ing j levels from the bottom of the tree and working to-
wards the root. This means that H represents the first
level of recursion, that is, H 0 is the same distribution as
F. Likewise, H logn] iq the same distribution as R. Then
it is possible to show that, if there is an efficient algo-
rithm A that can distinguish between any two neighbor-
ing function distributions H/ and H/*!, A can be used
to build a distinguisher for a synthesizer S. From this,

we conclude that, if there exists a probabilistic polyno-
mial time algorithm B that can distinguish between F
and R with non-negligible probability p, then there ex-
ists a probabilistic polynomial time algorithm C that is
a distinguisher for a synthesizer S with non-negligible
probability ﬂo’ﬁ' Thus, if pseudorandom synthesizers
exist, then the PRF construction is secure.

4 Number-Theoretic Constructions

Following their work on PRFs from pseudorandom syn-
thesizers, in [5] Naor and Reingold present two PRF
constructions that are even more efficient and parallel,
and still very simple to compute. The first construc-
tion discussed relies on the assumption that the Deci-
sion Diffie-Hellman (DDH) problem is hard, and the sec-
ond construction requires that factoring Blum integers is
hard.

4.1 PRFs from DDH

We first review the DDH assumption: Let P and Q be two
primes, where Q divides P — 1, and let Z; be the multi-
plicative group modulo P of order Q. Let g be a generator
for Z;. Then the DDH assumption says that there is no
probabilistic polynomial time algorithm that can distin-
guish between (g, g g”,z), where z is a random element
from Zj, and (g,g% g, g%") with non-negligible advan-
tage. While the DDH assumption is only an assumption
— there is no proof that such a distinguisher does not ex-
ist, there are arguments that support the assumption. For
example, in [6] Shoup shows that there is no efficient
algorithm that can solve the DDH problem with non-
negligible advantage, given only black box access to the
group. Here, black box access means that the algorithm
is not allowed to see the representations of g, g%, g”, g%,
but is only given ‘pointers’ to these values. So a prob-
abilistic polynomial time algorithm that knows nothing
about the group structure and must treat the group as a
‘black box’ cannot break the DDH problem.

4.1.1 Construction

We define the PRF construction as follows: each func-
tion f is defined by a key (P, Q, g,d), where P and Q are
primes as defined above, d is a sequence of n+ 1 ele-
ments of Zp, and g is an element of order Q in Z;. On
input x, where x is an n-bit string, we define fpg . 4(x) =
(g%)i=14i that is, for each i, g is raised to the power
a; if x; = 1. Note that, as described, the inputs to f are
n-bit strings, and the range is (g), the set of elements gen-
erated by g. This is problematic, because all functions in
a function ensemble ought to have the same domain and
range, which is not the case here. However, via hashing



we can make the range of f uniform over {0,1}". To
do this, we define a hash function % to hash the range
of f to strings in {0,1}", and define a second function

f;)’Q_’g@h = h(fpgga(x)) as our PRE.

4.1.2 Efficiency

In order to compute fpp (X)), we only need two com-
putations. First we need to compute the product ' =
apll,—1a;, where because g is of order Q, we can com-
pute the product @’ modulo Q. Then we need to compute
g“/. With some preprocessing, these computations are in
TC, that is, fpg ¢ a(x)) can be computed by circuits that
have constant depth and polynomially-many gates.

4.1.3 Security

This PRF construction can be described using a ver-
sion of the GGM construction, which will be impor-
tant for undersanding the proof of security. Define the
PRG Gpog(8”) = (GOp0ge1(8"), G pogee(s”)) =
(g, %), Note that, given the key for G, that is, given
a, we can compute G! efficiently. Then we can compute
fP.0.¢.¢¢(x) using G and the GGM construction, with dif-
ferent values for g at each step. We define frogalx) =
G¥pg g (--(G2pg,gqm (GMpogen (8)))). That is,
in phase i, G¥ipg , 44 (g%) outputs g% if x; = 0 and out-
puts g% if x; = 1. So after n phases, we have computed
the same function fpg , 7(x) as we originally defined it.
We sketch the proof idea for the proof of security: Let
F be the function ensemble defined by the PRF. Let R be
uniformly distributed over all functions R, : {0,1}" —
{0,1}". Tt can be shown that a sequence of polynomi-
ally many samples Lg = (Gpg g ¢a(8%)...Gpo.g.ge(gh)) is
pseudorandom iff any single sample is pseudorandom.
Moreover, any algorithm that distinguishes between Lg
and a random sequence can be made into a distinguisher
for a single sample with the same advantage, that is, a
distinguisher that breaks DDH with the same advantage.
Then assume that there exists a probabilistic polynomial
time algorithm A that distinguishes between F and R with
advantage > %, for some ¢ > 0, in time #(n). Using 4, it
is possible to construct an algorithm D that distinguishes
between the sequence Lg and a random sequence with
advantage > # in time poly(n) -t(n). Thus D can be
made inlto a distinguisher that breaks DDH with advan-

tage oy Therefore, the PRF is pseudorandom iff the

DDH assumption holds.

4.2 PRFs from GDH

The Generalized Diffie Hellman (GDH) assumption says
that, for P, Q, and g as defined above, given some se-
quence d = (aj,az,...,a,) of elements in Zy and some

subset T C [n], there is no probabilistic polynomial
time algorithm that, observing P, Q, and g, can com-
pute g'e7% with non-negligible advantage after query-
ing g'lier’% on only strict subsets T' C T.

4.2.1 Construction

In this construction the function f : {0,1}" — {0,1} is
defined by a key (P,0Q, g,d,r), where P, Q, and g are de-
fined as above, a= (a170,a1’1,a2,0,a2_’1,...,Cln,(),a,lvl) is a
sequence of elements in Zp and r is a random n-bit string.
Then fpg,ga, = (81, )2, where (g1, r), de-
notes the dot product of gn,’.'zla,;xi and r mod 2.

4.2.2 Security

We sketch the proof idea for the proof of security: Let '
be the function ensemble defined by the PRF, and let R
be uniformly distributed over all functions R, : {0,1}" —
{0,1}. Assume that a probabilistic polynomial time al-
gorithm A exists that, observing P, Q, g, and r, can dis-
tinguish F from R with non-negligible advantage > n%
in time #(n). Then an algorithm D exists that uses A
to distinguish fpp .4 ,(1") from random with probabil-
ity > #(n) Using the Goldreich-Levin hard-core bit
theorem it can then be shown that this distinguisher D
contradicts the GDH assumption [2], so as a result the
PRF is pseudorandom if the GDH assumption holds.

4.2.3 n-Dimensional Synthesizers

As a note, one of the original motivations for construct-
ing PRFs from the GDH assumption was to find a con-
cise construction of an n-dimensional synthesizer — a
construction without multiple levels of recursion. Us-
ing a similar construction as described above, we can de-
fine the synthesizer Spg, (b1,b2,...by) = (gM=1bi p),,
where (b1,by,...b,) is a sequence of elements in Zg.
Then, given k sequences Xi,X»,...Xy, the matrix of
outputs S(xj,x2,...x;) for any combination of inputs is
computationally indistinguishable from uniform, and so
Sp.g,r 18 an n-dimensional synthesizer.

4.2.4 PRFs from Factoring

A variant of the GDH assumption is the GDH assump-
tion modulo a Blum Integer N. (A Blum integer N has
the form N = P-Q, where P and Q are primes and
P =0 =3 mod 4.) This assumption says that, for a
Blum integer N, a quadratic residue g of Zy, and some
sequence d@ = (ay,az,...a,) of elements in [N] and some
subset T C [n], there is no efficient algorithm that, ob-
serving N and g can compute g'<7% with non-negligible
advantage after querying g'%ic’% on only strict subsets



T’ C T. In [1], Biham, Boneh, and Reingold show that
an algorithm that breaks GDH can be used to build an
algorithm that factors Blum integers. Therefore, a PRF
construction that is pseudorandom if the GDH assump-
tion holds is pseudorandom if factoring Blum integers is
hard. Additionally, this relationship is linear-preserving,
which means that if an algorithm can break GDH in time
t(n) with advantage €(n), then there exists an algorithm
that can factor Blum integers with the same advantage
and running time poly(n) - t(n).

In this case the construction is nearly identical to the
first construction from the GDH assumption, but where
each function f is defined by a key (N, g,d,r).

5 Conclusion

In this survey we explored the evolution of PRFs from
the GGM construction based on PRGs, to synthesizer
constructions, and finally to constructions that rely on
the assumptions that DDH and factoring are hard.

Additionally, there are many other interesting applica-
tions of these PRF constructions to explore — for exam-
ple, the number-theoretic constructions can be used for
multi-party pseudorandom function evaluation, where
the ability to query a function is distributed across mul-
tiple parties so that only certain sets of parties can eval-
uate the function. Other interesting applications include
oblivious evaluations of pseudorandom functions.

Finally, another enticing topic for further research and
surveying, perhaps outside of the cryptographic con-
text, is the relationship between PRFs and computational
learning theory. If a concept class contains pseudoran-
dom functions, then there is no efficient algorithm that
can learn that concept class. So PRFs can give us a better
understanding of how hard it is to learn different concept
classes.
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