
Attacking scrypt via Cache Timing Side-Channel

Mark Matthew Anderson
Stanford University

Abstract

This paper gives a motivation for the design of memory-
hard key derivation functions (KDFs), a summary of
a memory-hard password-based key derivation function
called scrypt, and an overview of cache timing attacks.
A cache timing attack against scrypt is introduced and
described in detail. Finally, additional work necessary
to implement the attack and measures to prevent the at-
tack are discussed. Since it is an actively-used utility
for generating cryptographic keys, constructing a pass-
word stealing attack against scrypt raises serious secu-
rity concerns for any applications that make use of it.

1 Introduction

1.1 Memory-Hard KDFs

KDFs are functions that compute random looking
cryptographic keys from human-generated passwords.
Human-generated passwords are far from random; users
often choose passwords that are based on predictable fac-
tors, like words or phrases that are familiar or meaning-
ful to the user. While these passwords are still somewhat
random, KDFs are used in practice to generate keys with
far higher degrees of randomness by applying pseudo-
random functions to the user’s input. The output of the
KDF is intended to appear independent from the user’s
input and to be impossible to invert. The increased ran-
domness provided by KDFs makes key guessing attacks
extremely unlikely to conduct successfully.

In addition to generating an output that is difficult to
predict and invert, standard KDFs are also designed to
take a relatively large amount of time to execute in or-
der to reduce the practicality of dictionary attacks. If
KDFs were quickly computable, an attacker could eas-
ily find an output’s preimage by evaluating the KDF for
a large set of potential passwords and finding which input
produces an output that matches the target value. Long-

running KDF algorithms make the process of enumerat-
ing all possible inputs a very laborious task. For exam-
ple, if a given KDF takes 1ms to process, it would take
an amount of time on the order of 1028 years for a single
machine to evaluate the KDF on all possible values of a
128-bit input.

Though designed to take a long time to evaluate, an is-
sue with standard KDFs is that attackers are often able to
accelerate their computation by means of algorithmic op-
timizations and highly parallel or specialized hardware.
Ruddick and Yan demonstrate such attacks on the pop-
ular PBKDF2 [1]. By shortening the execution time of
the KDF, an attacker is able to eliminate any protection
against a dictionary attack.

As a stronger measure to prevent dictionary attacks,
researchers have designed KDFs that are memory inten-
sive in addition to being time intensive. Designing a
KDF to be memory-hard is a way to preserve the long
runtime of the KDF by impeding any efforts to accelerate
its execution. Memory is an expensive and slow piece of
hardware. When large amounts of memory are required
to execute a function, parallelized hardware (like a GPU)
is ineffective at providing any speedup, since all the par-
allel hardware is competing for a fixed and small amount
of shared memory. Likewise, building specialized hard-
ware with enough parallelism and memory to quickly
evaluate the memory-hard KDF is impractical because
the designs are prohibitively expensive.

1.2 The scrypt Algorithm

The scrypt algorithm [2, 3] was designed by Colin
Percival to be a memory-hard KDF. It takes as input a
password (PW), a salt (S), a memory cost parameter (C),
an indexing parameter (I), a parallelization parameter
(P), and a desired output length parameter (Ls). Note-
worthy parameters within the function are an array of
blocks to be mixed (B), and a parameter that corresponds
to the length of the inputs and outputs of the function

MHMix (LMHM). The scrypt algorithm is defined by
the following function:

scrypt(PW,S,C, I,P,Ls) :
(B[0], ...,B[P−1])← PBKDF2(PW,S,1,P ·LMHM)
for j = 0 to P−1 do

B[j]←MHMix(B[j],C, I)
end for
return PBKDF2(PW,B[0]||...||B[P−1],1,Ls)

The MHMix function is what gives scrypt its memory-
hard property. MHMix takes as input a block to be
expanded and hashed (B), a memory cost parameter (C),
and an indexing parameter (I). Parameters used within
the function are a temporary block placeholder (X), a
memory-consuming array of hashes (A), and an indexing
variable (k). MHMix uses a hashing function Mix whose
details are important to the scrypt algorithm, but not
directly pertinent to the cache timing attack. MHMix
takes the input block, hashes it many times while saving
the hash results, and computes an output derived from
some of the hash results that are chosen by interpreting
certain hash values as indices. Since the hash values will
be unique to each password input to scrypt, the indices
of the hash values that are accessed and used in the
output will also be unique to each password. Since the
hash values that are needed to compute the true scrypt

output are password-dependent, an adversary conducting
a brute force dictionary attack against scrypt will be
unable to predict which values will contribute to the final
output and will be forced to store all values to potentially
be used, making array A in MHMix use large amounts
of memory. MHMix is defined as:

MHMix(B,C, I):
X ← B
for j = 0 to C−1 do

A[j]← X
X ←Mix(X , I)

end for
for j = 0 to C−1 do

k← ((int)X) mod C
X ←Mix(X⊕A[k], I)

end for
return X

1.3 Cache Timing Attacks

Cache timing attacks are a class of side-channel attacks
that extract information based on the availability or un-
availability of data in a processor’s cache. These attacks
are used to determine when certain data or instructions
are being used. Knowledge of when particular data or
instructions are in use can disclose details about secret

information when data accesses or function calls in a pro-
gram are dependent on this secret information.

Yuval Yarom’s PRIME+PROBE method [4] is an ex-
ample of a cache timing attack, and is the best technique
to use against scrypt. The PRIME+PROBE method is
used to track the access patterns of data over time by
intentionally thrashing target data in the cache and ob-
serving when the victim puts that data back in cache.
First, the attacker flushes the victim’s data from cache
(the PRIME stage) by accessing data that it knows will
evict the victim’s data from cache. Then, after waiting
to give the victim an opportunity to access its data, the
attacker attempts to access the data it put in cache (the
PROBE stage). If the time to retrieve the data is relatively
short, that means that the victim did not access its data. If
the time to retrieve the data is relatively long, the victim
accessed the target data, which caused the attacker’s data
to be evicted from cache, forcing the attacker to wait for
its data to be retrieved from a lower-level memory.

The PRIME+PROBE attack can be used any time the
attacker shares some level of processor cache with the
victim. This can happen when the attacker and victim
processes are two processes running on the same ma-
chine or when the attacker and victim are working on
separate virtual machines that are hosted on the same
machine. Note that it is not necessary that the attacker
and victim be using the same core on a multi-core pro-
cessor, they only need to be sharing cache memory on
some level.

2 Attack on scrypt

2.1 Vulnerability
What makes the cache timing attack on scrypt possible
is the following code from the MHMix function:

k← ((int)X) mod C
X ←Mix(X⊕A[k], I)

As previously mentioned, A is the array that gives
scrypt its memory-hard property. A stores all the re-
peated hashes of B, such that A[n] = Mixn(B), where
Mixn(B) is the result of hashing B n times (e.g.
Mix2(B) = Mix(Mix(B, I), I)). In the above lines of
code, elements of A are chosen to be used in calculation
of the scrypt result by interpreting hash results, which
are unique to and derived from secret information (the
evaluation of PBKDF2 on the user’s password), as inte-
gers and using them to index through A (with the variable
k). Since these memory accesses are dependent on the
password, patterning the memory accesses observed dur-
ing an execution of scrypt will give information about
the result of the evaluation of PBKDF2 in the first step
of the scrypt algorithm.

2

Learning enough information about the PBKDF2 hash
of the victim’s password allows an adversary to re-
duce an attack on scrypt to an attack on PBKDF2,
thereby bypassing the memory-hardness of scrypt.
More specifically, once the memory access pattern of
scrypt is observed, the attacker can construct a dictio-
nary of PBKDF2 hashes of potential passwords, com-
pute what their access patterns will be, and compare the
observed memory access patterns to the access patterns
of the hashes in the dictionary. Bypassing the memory-
hardness of scrypt by shifting the attack to an attack on
PBKDF2 allows the attacker to take advantage of all the
attack shortcuts scrypt was designed to prevent.

2.2 Procedure

When computing each entry of the dictionary of candi-
date passwords, the attacker will have to compute the
PBKDF2 hash of each candidate with the same param-
eters as used by scrypt. For each block of the PBKDF2
hash of a candidate password (B[0], ...,B[P− 1] in the
first line of the scrypt algorithm), the attacker will
compute and store the resulting derived index DI[i] =
Mixm(B[i]) where m is equal to the value of C being used
by the scrypt call that is being attacked.

After constructing the dictionary of candidate pass-
words and their arrays of derived indices, the attacker
will monitor a victim’s execution of scrypt. For each
iteration of the loop in the scrypt function, the at-
tacker will use a cache timing attack method like the
PRIME+PROBE procedure to observe the memory ac-
cesses that happen when MHMix is called.

In the MHMix function, the attacker will first notice
a series of temporally sequential memory accesses that
correspond to the hashes calculated and stored in A. Be-
tween these accesses will be other accesses that result
from the call to Mix that will follow a predetermined
and constant pattern. By knowing what this memory ac-
cess behavior will be, and seeing it repeat as each hash is
calculated, the attacker will be able to distinguish these
memory accesses from the important ones, and will thus
be able to discard or ignore them during future analysis.
For simplicity, these Mix memory accesses are ignored
in this paper. The second set of memory accesses the at-
tacker will notice will be a product of the second loop in
MHMix where the contents of A are used to construct the
function’s output. These are the memory accesses that
are password-dependent. The attacker will note which
memory location is accessed first in this stage of the com-
putation.

By seeing where this memory location falls in rela-
tion to the memory locations accessed during the hashing
loop, the attacker will be able to reason as to which index
of A the memory location corresponds to. By learning the

index of the first element accessed in the output construc-
tion stage of MHMix, the attacker learns the value of
MixC(·) mod C evaluated on the input to MHMix. With
knowledge of this value, the attacker can reduce the set
of potential passwords to the subset whose correspond-
ing DI are equal to this value. From here, the attacker
can either continue to observe evaluations of MHMix in
this manner and further reduce the set of potential pass-
words, or they can brute force through the reduced candi-
date password set to find out which is the victim’s pass-
word.

A simple, contrived example of anticipated memory
access patterns observed during MHMix execution on a
block Bex is given in Figure 1. From time slot 0 to time
slot 20, the hashing loop is being executed. This is where
the attacker will observe sequential memory accesses as
the hashing results are stored in A. Knowing this ac-
cess structure, the attacker can deduce that the first ac-
cess corresponds to A[0], the second access corresponds
to A[1], and so on. Next, at time slot 21, the attacker sees
an access to a memory location that was previously ac-
cessed during the hashing stage. This marks the end of
the hashing stage and the beginning of the construction
of the MHMix output. The first access of this stage is
what the attacker is interested in. In the example, the first
element accessed in the output construction stage corre-
sponds to the fourteenth element accessed in the hashing
stage, which in turn corresponds to A[13]. This means
that Mix21(Bex) = 13 when interpreted as an integer mod
21. With this knowledge, the attacker can narrow the
set of potential passwords to the set of candidates whose
PBKDF2 hash block corresponding to Bex equals 13 mod
21 after being passed to Mix21(·).

Figure 1: Example MHMix Memory Access Pattern

The size of the PBKDF2 output blocks are, at mini-
mum, 16 bytes. When run under recommended condi-
tions [2], the output block size will be 128 bytes. These
sizes are on the order of the size of standard cache lines,
which provides good resolution for this attack. The at-
tack would become more difficult if the output blocks
were much smaller than cache line sizes because the at-

3

tacker only observes cache line access. In the case where
output blocks are much smaller than cache lines, an ac-
cess to a cache line means that one of the many output
blocks in that cache line is being accessed. Having less
of an idea of which specific output block is being ac-
cessed means the attacker is not able to rule out as many
candidate passwords as they would be able to otherwise.

3 Attack Prevention

3.1 Skew-Associative Cache
A PRIME+PROBE-style attack on scrypt would likely
be unsuccessful if conducted on a processor that
has a skew-associative cache architecture. Standard,
unskewed set-associative caches map cache lines to the
same index of each way of the cache, where skew-
associative caches map cache lines differently to each
cache way based on functions that are unique to each
way. This is meant to decrease conflicts in the cache,
which is exactly why the PRIME+PROBE attack becomes
more difficult to conduct.

The PRIME+PROBE attack makes use of eviction sets,
which are sets of cache lines that all map to the same
index within each way. If a processor has an n-way set-
associative cache that holds k cache lines in each way,
the attacker will construct k eviction sets consisting of n
cache lines. When the attacker wants to evict a specific
cache line that exists at index i in one of the cache ways,
they will access each of the n elements of the eviction
set for index i. As the elements of the eviction set are
mapped into the cache, they will evict the cache line that
is currently residing at index i. By accessing n such ele-
ments, the attacker evicts the data at index i in each of the
n ways in the cache, assuming an eviction policy similar
to least-recently used.

The attack relies on constructing a set of cache lines
that will be mapped to the same index in each way of the
cache in order for the eviction just described to work. It
is hard, if not impossible, to construct the eviction sets
in a skew-associative cache due to the fact that a cache
line will evict from a different index depending on which
way in the cache it is mapped to. If unable to construct
eviction sets, the attacker will be unable to conduct a
PRIME+PROBE cache timing attack.

3.2 Exclusive Cache Hierarchy
Another assumption that the attack relies on is the use
of an inclusive cache hierarchy. When the cache hierar-
chy is inclusive, any data stored in higher levels of cache
must also be stored in lower levels. This is done in an ef-
fort to maintain data coherence and availability between
processor cores.

A cross-core attack would not work on a multi-core
machine that implemented an exclusive cache hierarchy.
When the attacker and victim processes are running on
separate cores of a processor, the PRIME+PROBE attack
method depends on the fact that an inclusive cache evicts
a cache line from all cache levels it resides in when the
cache line is evicted from the shared lower level. The
attacker evicts victim data from the shared cache, com-
pletely removing the data from the entire cache. The vic-
tim is then forced to access lower levels of memory when
it tries to look up the data that got evicted, which then
evicts some of the attacker’s data when it is brought into
cache. In an exclusive cache architecture, the attacker
can evict victim data from the shared level of cache, but
doing so does not evict the data from higher levels of
cache. If the data still exists in the higher levels of cache,
it is still available to the victim core’s operation, and the
victim is not forced to bring the data back into the shared
cache. If the victim does not have to bring data into
shared cache, the attacker cannot observe when the data
is accessed, making the attack impossible to carry out.

In the case of a single-core machine, the attack practi-
cality holds whether the cache is inclusive or exclusive.
This is due to the fact that the attacker and victim pro-
cesses will be running on the same processor and have
access to and control of the same cache memory.

3.3 Parallel Execution
The scrypt algorithm currently iterates through a loop
and makes sequential calls to MHMix, which an at-
tacker can then attack by observing memory accesses.
If scrypt were to make these calls to MHMix in paral-
lel rather than sequentially, making sense of the observed
memory accesses would be much harder for the attacker.

With multiple parallel calls to MHMix executing si-
multaneously, it would be difficult to decide which mem-
ory accesses belong to which call of the function. This is
not to say it would be impossible, though, because if the
attacker is able to get information that would help dif-
ferentiate the function calls, it may be able to correctly
group the memory accesses. Such information would in-
clude a thread scheduling policy, physical memory lo-
cations, or memory access timing relationships. When
making parallel calls to MHMix, the scrypt user needs
to be careful that sufficient memory is available to handle
these parallel calls.

4 Conclusion

4.1 Future Work
At the time of writing this paper, the author’s efforts to
implement the attack described by modifying the opera-

4

tion of existing tools have not been successful. Though
some open-source cache timing analysis tools exist, fur-
ther efforts are required to alter them or build new tools
in order to realize the attack in practice.

Further research and experimentation will also need to
be conducted to identify and resolve difficulties in the
practical implementation of the attack. Such difficulties
may include how to detect when the victim begins exe-
cuting scrypt, how to filter out observed memory ac-
cesses due to processes unrelated to scrypt, and how to
deal with otherwise noisy or incomplete memory access
observations.

4.2 Summary
This paper gives the motivation for memory-hard KDFs,
an overview of the scrypt memory-hard KDF, and an
introduction to cache timing attacks. A cache timing
attack against scrypt is then proposed and discussed,
along with techniques and policies to prevent it. Finally,
ideas for future work and ways to further develop the at-
tack are presented.

References

[1] A. Ruddick and J. Yan. (2016) Acceleration
Attacks on PBKDF2: Or, what is inside the
black-box of oclHashcat? [Online]. Available:
https://www.usenix.org/conference/woot16/workshop-
program/presentation/ruddick

[2] C. Percival. (2009) Stronger Key Derivation Via Se-
quential Memory-Hard Functions [Online]. Avail-
able: http://www.tarsnap.com/scrypt/scrypt.pdf

[3] C. Percival et al. (2017) The scrypt Key Derivation
Function (Version 1.2.1) [Source Code]. Available:
https://github.com/Tarsnap/scrypt

[4] Y. Yarom et al. (2015) Last-Level Cache Side-
Channel Attacks are Practical [Online]. Available:
http://ieeexplore.ieee.org/document/7163050/

5

