
Cipher Implementation for CESEL

Kevin Kiningham
Stanford University

Maurice Shih
Stanford University

Abstract

CESEL is a recently proposed cryptographic architecture
that can accelerate a wide variety of ciphers, in contrast
to most previous accelerator designs which focus on op-
timizing for a particular cipher. The architecture features
a 32 lane SIMD architecture with 8-bit datapath, spe-
cialized execution units, and a control unit designed for
cryptographic control flows. In this project we imple-
ment several cryptographic ciphers for CESEL, a RISC-
V microcontroller, and as a fixed function accelerator.
We then evaluate the power efficiency of each design,
allowing us to both compare CESEL’s performance on
different ciphers, and investigate how easy it is to map
new ciphers to CESEL.

1 Introduction

Low power embedded devices are increasingly being
used to collect and report sensitive data. Storing and
transmitting this data encrypted then becomes critically
important to ensure the security of the overall system.
However, for many of these devices, encrypting data on
an embedded microcontroller can strain power budgets,
meaning that system designers have to choose between
strong encryption and a longer battery life.

To address this issue, many Solutions on Chip (SoCs)
include fixed function cryptographic accelerators, which
can encrypt data using orders of magnitude less power
than a microcontroller. Unfortunately, this solution only
works as long as the exact ciphers needed can be pre-
dicted over the lifetime of the device; if security re-
quirements change unpredictably (for example, due to
changes in regulations, or advances in cryptanalysis)
fixed function accelerators no longer provide a signifi-
cant benefit, requiring hardware to be replaced and up-
graded.

A proposed approach to this problem is CESEL, a flex-
ible accelerator for cryptography, designed to acceler-

ate a wide variety of ciphers and cryptographic primi-
tives. In this project, we are implementing several key
ciphers and evaluating how easy it is to translate the ci-
phers into the proposed architecture. Additionally, we
are evaluating the overall efficiency of the architecture
across multiple different algorithms. We find that CE-
SEL can provide significant acceleration to all ciphers we
investigated, providing between a 10x-60x improvement
in total energy consumption depending on the cipher. We
also find that CESEL uses between 10x-20x more energy
than fixed function hardware (Table 1).

2 CESEL Architecture

The design of CESEL is split into two distinct pieces:
the frontend, which handles instruction fetch and decode,
and the backend, which handles instruction execution.

2.1 Frontend

The CESEL frontend consists of three components,
shown in figure 1. The first, the fetch and decode unit,
interfaces with the memory bus and decodes fetched in-
struction into control signals. The second, a loop stack,
records loop information and execution context. The
third, an instruction queue, holds decoded instructions
waiting to be executed.

An important design feature of CESEL is it’s lack of
data dependent branches. Practical implementations of
cryptographic algorithms avoid data dependent branch-
ing since it is a common source of timing attacks. Ad-
ditionally, removing data dependent branches means that
control decisions can be made with perfect accuracy af-
ter instruction decode, which significantly simplifies CE-
SEL’s design.

However, this can also dramatically increase the code
size needed for ciphers with many loops. To address this,
a special component called a ”loop stack” is used, which



AXI Shim

Fetch and Decode

Control Unit

Program Counter

Loop Ptr. 1 Iter. Count

Loop Ptr. 2 Iter. Count

Instruction

Queue

To Reg. Read

Figure 1: Instruction fetch and decode datapath.

keeps track of state for currently executing loops. To be-
gin a loop, a special instruction LOOP BEGIN pushes the
current instruction pointer along with the number of iter-
ations to execute to the top of loop stack. To end a loop,
the LOOP END instruction compares the number of itera-
tions at the top of the stack to zero. If it’s equal to zero,
the top entry is popped off the loop stack and execution
continues. Otherwise, the instruction pointer is set the
saved instruction pointer and the saved iteration count is
decremented.

2.2 Backend

The backend is a 32-lane SIMD architecture, show in fig-
ure 2. Each cycle, each lane receives an identical de-
coded instruction from the frontend and reads the rele-
vant values from it’s local register file. Each lane then ex-
ecutes it’s instruction and writes the resulting value back
to a register. To move values between lanes, a special
permute instruction is used. Since the frontend does not
allow data dependent branching, there are no hazards ex-
cept for register read-after-writes (RaW), which are han-
dled using forwarding paths. As a result, an instruction
can be executed every cycle as long as the instruction
queue is filled.

...

32 Lanes

Registers

Premute

ALU

... From inst. queue

Figure 2: Register read and execution datapath.

3 ChaCha-20 (work by Kevin)

We have implemented ChaCha-20 in CESEL assembly,
C, and Verilog. Our CESEL assembly implementation
is based on the AVX2 implementation in libsodium[3].
We found that this implementation mapped very closely
to CESEL’s own instruction set and could be nearly di-
rectly used; since ChaCha was designed to execute using
simple vectorized instructions, it maps cleanly onto CE-
SEL.

Our C implementation is the reference implementation
from libsodium compiled for RISC-V. Our application
specific circuit is a fully unrolled implementation based
on the implementation by SecWorks.

4 Curve25519 (work by Kevin)

We have implemented Curve25519 key-exchange in C
and have a partially working implementation in CESEL
assembly. Our C implementation is a direct port of
the ref10 implementation by D. J. Bernstein included in
libsodium[3].

Our CESEL implementation is based on the
Sandy2x[2] by Tung Chou included in libsodium.
Unfortunately, this implementation was much more
difficult to port to CESEL assembly than ChaCha since
it uses several features of x64 that are not present in CE-
SEL. For example, it uses a 32-bit operand/64-bit result
vectorized multiply which does not exist on CESEL;
instead this operation was implemented using a sequence
of 8-bit multiply-accumulate operations. Unfortunately,
we did not finish the complete implementation and
cannot fairly compare between architectures.

5 SHA-256 (work by Maurice)

We have created a C implementation and CESEL for
the SHA-256 hashing [4] of one post-processed 512-bit
block of text. Since SHA-256 is constant for one block,

2



we don’t worry about branching. In addition, all com-
putation is bit manipulation so we are not dependent on
possible branching of operations.

5.1 C Implementation
In the SHA-256 algorithm, 32-bit blocks of data called
words are operated on by functions such as shift and ro-
tate. Since unsigned integers in C are 32 bits, many of
the operations can implemented through a small number
of C bitwise operators.

For example. rotating to the right by n can be done
with (x << n)|(x >> (32−n)). From bitwise operations
like these, the six main functions, ch, maj, ∑0, ∑1, σ0,
and σ1 of SHA-256 were implemented.

5.2 CESEL Implementation
The biggest bottleneck in this framework is the loading
and storing of data. In order to combat this, we load in
full registers of data each time we load in data. CESEL
has 16 registers, with lanes of 32 8-bit values. Since each
value is 8 bits in a lane, 4 values make up one 32 bit word.

Due to having the rotate right assembly instruction and
not a shift left, rotating the whole 32 bit or 4 8 bit word is
less straight forward. There are four categories of shift-
ing, shifting 0-7 places, 8-15, 16-23, and 24-31. As an
example, if we wish to shift by say 3 places, then we need
2 registers for calculation. The first is a copy of the data
(the permutation is 0,1,2,3) and a permutation of the four
8 bits as 3,0,1,2. We rotate the two registers by 3. We
then and the first lane by 0b00011111 and the second by
0b11100000. The final step is to add the two registers.

For a given main function, such as ∑0, 3 registers are
needed, two for manipulation of data and a third to retain
the result. The other 12 registers are used to hold data,
which can hold 96 32-bit words. At the end of the al-
gorithm, the majority holds the 512 bit (or 64) message
block that we will hash.

The bulk of SHA-256 is composed of two for loops in
which each step of the for loop is dependent on the values
calculated in the previous step. This creates a bottleneck
as each step must be computed in serial. This wastes the
32 value lanes as functions are only applied to one 32-bit
value at a time (we only care about the computation done
on the first four lanes in a register).

6 Frodo LWE (work by Maurice)

We have created a C implementation and CESEL for the
Frodo LWE key exchange [1]. This protocol utilizes a
common matrix A that is public knowledge, as well as
secret matrices B′S and V , which is generated by ma-
trix multiplication and addition of A by error matrices

for Alice and Bob respectively. These two matrices are
secrets that Alice and Bob have and are very simliar but
not identical. Using the reconciliation mechanism, with
high probability, Alice and Bob get the identical matrix K
from these two matrices that can used as a private session
key. In this implementation, we use the recommended
parameters with n = 752, q = 215, error distribution of
D3 and m̄ = n̄ = 8.

In our implmentation, we assume that the random bits
we need is already generated, so we do not take into ac-
count the cycles and power comsumption used to do so.
We are counting the totaly amount of work that Alice an
Bob must do after random bits are generated fot this key
exchange.

6.1 C Implementation
Since all calculations are done in modulo q = 215, we
used unsigned 16-bit integers to represent values and
apply the bitwaise and function with 215− 1 = 32767
when the reduced value is needed. In this protocol, there
are four main parts, the matrix multiplication, rounding
function, cross function and the reconciliation function.

In the C implementation, matrix multiplication was
done with three for loops. For the rounding and cross
function, bitwise operations were used to ensure constant
running time. For reconciliation function, it was neces-
sary to create a constant time function that given inputs
a and b, would output 1 if a > b. To achieve this, a new
function was created to compare the bits of a and b, start-
ing with the most significant bit. There were two work-
ing variables, one to denote if the ith bit of a and b were
previously not the same (if this was the case, as already
know if a > b) and the actual output. Based on the bit
that was the greater function output, the reconciliation
would output one of two options. However, branching
was created.

6.2 CESEL Implementation
All four main parts of the frodo LWE algorithm, the ma-
trix multiplication, rounding function, cross function and
the reconciliation function, can each be done in parallel
as we apply these functons to multiple values. Specif-
ically, we apply functions to each element in a matrix.
Since each register has 32 lanes, this allows each register
to represent 16, 16-bit unsigned integers. This allows us
to operate 16 values for a single instruction.

As all matrices have a multiple of 16 number of ele-
ments, this creates a very natural way of optimizing the
protocol by doing operations in parallel. For example,
to compute a matrix multiplication of a a by 752 and
752 by b, each entry requires 752/16 = 47 multiplica-
tion instructions (all matrix multiplications are in this

3



AXI-Lite Bus

CESEL

Slave Slave

RISC-V

Core
Master

SRAM

Figure 3: Architectural overview of the test system.

form). However, due to the sheer amount of data the
needs to be processed (for example, the matrix A has
752 · 752 = 565504 values), many loading and storing
of values in the registers are needed, which is extremely
power costly.

The CESEL architecture only has 16 registers, which
means that only 256 16-bit values can be stored at any
given time, and that is assuming that we don’t need any
registers to preform calculations. In reality, many reg-
isters are needed for computation so data is loaded and
stored often. For example, the size of matrix A that Al-
ice and Bob share is 2209 times the amount of data that
the registers can hold. Although the computation time
in CESEL is less than C’s by a factor of 16 for many
of the operations, the load and storing of the data is less
efficient and consumes more poewr.

7 Evaluation

We evaluated our cipher implementations by comparing
to two baseline systems: an application specific circuit
(ASIC) and a C implementation running on a RISC-V
microcontroller. In order to accurately measure power
differences between systems, we implemented a sim-
ple test harness similar to an actual SoC implementation
(Fig. 3). CESEL and the RISC-V core are connected
over an AXI-Lite bus to a 64K SRAM macro block. All
instructions and data are fetched over the AXI bus, al-
though the reported power only includes the execution
power, not the power of fetching data.

Power was measured by propagating the activity fac-
tors from simulation to a synthesized version of our
test harness. Simulation was performed using Synopsys
VCS. Synthesis was performed using the Synopsys De-
sign Compiler (with topological mode enabled) targeting
a 180nm TSCM process with all power and timing re-
lated optimizations enabled. A bottom up flow was used,
first synthesizing CESEL and the RISC-V core indepen-
dently, both with a 20ns clock cycle timing constraint,
and then combining the resulting designs in a top level
synthesis. For the ASIC designs, the test harness was not
used, although a 20ns cycle time was still targeted. For
final extraction of power information, we used Synopsys
PrimeTime PX.

ASIC CESEL RISC-V
AES-CTR 7.07 147.5 9036
SHA-256 - 3279 12630

ChaCha-20 15.3 302.4 2021
Frodo LWE - 108224 109502
Curve25519 - - 40454

Table 1: Energy consumption in nJ for different ciphers.

Results are summarized in table 1.

8 Conclusion and Future Work

In this project we have investigated the efficiency and
flexibility of the CESEL architecture by implementing
several key ciphers and comparing equivalent implemen-
tations in both hardware and software. We find that CE-
SEL can provide significant acceleration to all ciphers we
investigated, providing between a 1x-60x improvement
in total energy consumption depending on the cipher (Ta-
ble 1). Additionally, we find that CESEL uses between
10x-20x more energy than fixed function hardware.

For future work, we have three possible improvements
we would like to investigate. First, we would like to
complete the ciphers we did not finish and implement
as many more ciphers as possible to get a better compar-
ison.

Second, we found that the process of translating ci-
phers into CESEL assembly can be very tedious and time
consuming; each cipher took several weeks of work and
very little of it could be reused in other ciphers. As a
result, a possible improvement would be to write a com-
piler that could automatically take a high level descrip-
tion of a cipher and convert it into CESEL assembly.

Third, we found several cases where we wish that CE-
SEL had additional support for operations that were not
in the underlying architecture. For example, an instruc-
tion that could reduce across all 32 lanes would be useful
for things like matrix multiplication. As another exam-
ple, allowing some lanes to be ”masked” (i.e. non-active)
for a short period would simplify writing algorithms that
operate on only a small amount of data at a time. How-
ever, it is important that we balance adding specialized
hardware for specific algorithms with the need to be
generic.

References

[1] J. Bos, C. Costello, L. Ducas, I. Mironov,
M. Naehrig, V. Nikolaenko, A. Raghunathan, and
D. Stebila. Frodo: Take off the ring! practical,
quantum-secure key exchange from lwe. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Com-

4



puter and Communications Security, pages 1006–
1018. ACM, 2016.

[2] T. Chou. Sandy2x: New curve25519 speed records.
In International Conference on Selected Areas in
Cryptography, pages 145–160. Springer, 2015.

[3] F. Denis. Libsodium: A modern and easy-to-use
crypto library. https://github.com/jedisct1/

libsodium, 2014–2017.

[4] D. E. Standard et al. Federal information processing
standards publication 46. National Bureau of Stan-
dards, US Department of Commerce, 1977.

5


