
Implementation of Lattice-Based Signature Scheme Ring-Tesla and
Comparison with ECSDA

Kenneth Xu
Stanford University

Abstract

In search of efficient post-quantum alternative signature
schemes, lattice-based schemes like BLISS and GLP
have become promising fields of research. In this pa-
per we provide an open-source implementation of the
Ring-TESLA scheme [1], which is based on the TESLA
signature scheme by Alkim et al. [2]. Ring-TESLA is
not only theoretically as efficient as the BLISS and GLIP
schemes, but also has provably secure instantiation.
We compare the speed of our Ring-Tesla implementation
with an ECDSA implementation for two different secu-
rity levels.

1 Introduction

Our implementation closely follows the description pro-
vided by Akleylet et al. 2016. Ring-TESLA has a secu-
rity reduction from the R-LWE problem [3] 1. As long as
R-LWE is computationally hard, Ring-Tesla is unforge-
able against the chosen-message attack. [1]

1.1 Advantages over BLISS and GLP

Ring-Tesla has a stronger security argument since it
achieves both good performance with provably secure in-
stantiation, while BLISS and GLP can only achieve one
or the other. Provably secure instantiation means param-
eters are chosen according to the security reduction [1].
Moreover, Ring-Tesla uses uniform-sampling during sig-
nature generation, unlike BLISS, which uses Gaussian-
sampling, generally assumed to be vulnerable to tim-
ing attacks. Comparing the resilience of BLISS, GLP,
and Ring-TESLA to fault attacks in Bindel et al. 2016
[4] found that the Ring-TESLA scheme was sensitive to
a strict subset of fault attacks affecting the BLISS and
GLP.

2 Ring-Tesla Signature Scheme

Ring-Tesla is parameterized by a number of integers:
n,ω,d,B,q,U,L,κ and the security parameter λ where
n > κ > λ . n is a positive power of 2 and q is a prime
where q = 1(mod 2n).
The quotient ring of polynomials we work with is
defined as Rq = Zq[x]/(xn + 1) - in other words, all
polynomials of degree up to n− 1 with coefficients in
the range (− q

2 ,
q
2). The signature scheme also uses a

Gaussian distribution Dσ (with standard deviation σ), a
Hash function H : {0,1}∗ → {0,1}κ , and an encoding
function F which maps the binary output of H to a
vector of length n and weight ω . We implemented a
similar encoding scheme as found in Gneysu et al. [5]

We provide a mathematical overview of the Ring-
Tesla algorithm below:

2.1 Globals
a1 and a2 are global polynomials uniformly sampled
from Rq.

2.2 Key Generation
The pseudocode below is borrowed from Akleylet et al.
[1]

KeyGen(1λ;a1,a2):

s,e1,e2→ Dn
σ

If checkE(e1) = 0 ∨ checkE(e2) = 0:

Restart

t1→ a1s + e1 (mod q)

t2→ a2s + e2 (mod q)

sk → (s,e1,e2)

pk → (t1,t2)
return (sk, pk)

We first sample three polynomials s, e1, and e2 from
Gaussian distribution Dσ . Each polynomial requires n

samples, one for each degree from 0 to n−1.
A polynomial passes the checkE function if the sum of
its ω largest coefficients is less than L.

2.3 Sign
The pseudocode below is borrowed from Akleylet et al.
[1]

Sign(µ;a1,a2,s,e1,e2):

y → Rq,[B]

v1 → a1y (mod q)

v2 → a2y (mod q)

c’ → H

(
bv1ed,q, bv2ed,q

)
c → F(c’)

z → y + sc

Rejection sampling

w1 → v1 - e1c (mod q)

w2 → v2 - e2c (mod q)

If [w1]2d,[w2]2d /∈R2d−L ∨ z /∈ RB−U:

Restart

Return (z, c’)

First, polynomial y is uniformly sampled from Rq,
with additional constraints on the size of coefficients.
Every coefficient in y must lie in the range [−B,B] where
B ∈ [0, q

2].
We hash the concatenation of the rounded values of
v1 and v2 and the message µ (to sign). This round-
ing function is defined the following way: bxed,q = bx(
mod q)ed and byed = (y− [y]2d)/2d , where [y]2d is the
mod representation of y in the range [−2d−1,2d−1] and
/2d defines a quotient group.
The encoding function is applied right after hashing to
produce the signature (z,c).
Before returning, however, we apply rejection sampling
by making sure the coefficients of polynomials w1, w2,
and z are not too large.

2.4 Verify

The pseudocode below is borrowed from Akleylet et al.
[1] and is similar to the reverse of sign().

Verify(µ;z,c’;a1,a2,t1,t2):
c → F(c’)

w′1 → a1z - t1c (mod q)

w′2 → a2z - t2c (mod q)

c’’ → H

(
bw′1ed,q, bw′2ed,q

)
If c’=c’’ ∧ z ∈ RB−U:

Return 1

Else: Return 0

3 Implementation

We implemented the Ring-Tesla signature scheme in
C++ and compared its speed with that of a ECDSA C++
implementation.

3.1 Selection of Parameters
We selected mostly the same provably secure parameters
as Akleylet et al. [1] described, for two security levels:
80-bit and 128-bit. Like the paper, we will name them
RingTesla-I and RingTesla-II respectively. We changed
the value of ω to 16 for easier implementation. Below
are our selected parameters:

Parameter set Security bits n σ L ω B U d q
RingTesla-I 80 512 30 814 16 221−1 993 21 8399873
RingTesla-II 128 512 52 2766 16 222−1 3173 23 39960577

3.2 Code
Our implementation is available at:
https://github.com/kenxu95/rtesla

The code also contains speed an soundness tests (in
main.cc).

4 Performance Results

We ran and compared the speed of the three methods
KeyGen(), Sign(), and Verify() on 10,000 random string
messages of 500 characters. We measured the speed
in cpu time. To calculate the speed of each call, we
averaged over all 10,000 trials for each method. Below
are the results (in milliseconds per call):

Signature Scheme KeyGen Sign Verify
Ring-Tesla-I 2.61 16.20 4.99
Ring-Tesla-II 2.49 15.30 4.82

ECDSA w/ secp160r1 0.92 1.03 1.08
ECDSA w/ secp192r1 0.67 1.07 1.15
ECDSA w/ secp224r1 1.71 1.89 2.05
ECDSA w/ secp256r1 2.81 2.99 3.29
ECDSA w/ secp256k1 2.14 2.30 2.35

We compared our Ring-Tesla implementation against
five different ECDSA curves, each providing a different
level of bit security. While the trend is for the ECDSA
algorithm to take more time when providing more bits
of security, the same cannot be said for Ring-Tesla.

We are mainly interested in curves secp192r1 and
secp256r1, which provide 80 and 128 bits of security re-
spectively, just like our Ring-Tesla parameter sets.
It is clear that Ring-Tesla is significantly slower when
signing, possibly due to rejection sampling. For 80-bit

2

security, key generation and verification in ECDSA are a
few times faster. However, for 128-bit security, the gap
between the two schemes shrinks significantly. It is pos-
sible that, with sufficient optimization, Ring-Tesla can
match the speed of ECSDA key generation and verifica-
tion.

References
[1] AKLEYLEK, S., BINDEL, N., BUCHMANN, J., KRMER, J., AND

MARSON, G. A. An efficient lattice-based signature scheme
with provably secure instantiation. In International Conference on
Cryptology - AFRICACRYPT 2016 (2016), A. N. D. Pointcheval,
T. Rachidi, Ed., Springer, pp. 44–60.

[2] ALKIM, E., BINDEL, N., BUCHMANN, J., AND DAGDELEN, O.
Tesla: Tightly-secure efficient signatures from standard lattices. In
Cryptology ePrint Archive (2015).

[3] ALKIM, E., BINDEL, N., BUCHMANN, J., AND ÖZGÜR DAGDE-
LEN. Tesla: Tightly-secure efficient signatures from standard lat-
tices.

[4] BINDEL, N., BUCHMANN, J. A., AND KRMER, J. Lattice-based
signature schemes and their sensitivity to fault attacks. In IACR
Cryptology ePrint Archive (2016).

[5] GNEYSU, T., LYUBASHEVSKY, V., AND PPPELMANN, T. Prac-
tical lattice-based cryptography: A signature scheme for embed-
ded systems. In Cryptographic Hardware and Embedded Systems
– CHES 2012: 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings (Berlin, Heidelberg, 2012),
E. Prouff and P. Schaumont, Eds., Springer Berlin Heidelberg,
pp. 530–547.

Notes
1Gus Gutoski and Chris Peikert discovered a mistake in the tight

security reduction from the R-LWE problem to TESLA presented in
the referenced paper. The mistake, however, does not yet lead to any
attack against TESLA. The non-tight security reduction given by Bai
and Galbraith still holds.

3

