
Implementing and Comparing Integer Factorization Algorithms

Jacqueline Speiser
jspeiser

Abstract

Integer factorization is an important problem in modern
cryptography as it is the basis of RSA encryption. I have
implemented two integer factorization algorithms: Pol-
lard’s rho algorithm and Dixon’s factorization method.
While the results are not revolutionary, they illustrate
the software design difficulties inherent to integer fac-
torization. The code for this project is available at
https://github.com/jspeiser/factoring.

1 Introduction

The integer factorization problem is defined as follows:
given a composite number N, find two integers x and y
such that x · y = N. Factoring is an important problem
because if it can be done efficiently, then it can be shown
that RSA encryption is insecure. For this project I have
implemented two factoring algorithms: Pollard’s rho
algorithm and Dixon’s factorization method. (I also
implemented the quadratic sieve algorithm, but that code
is not yet working.)

Pollard’s rho algorithm [2] is a special-purpose
factorization algorithm effective at factoring numbers
with a small prime factor. It works by generating a
sequence x1 = g(2),x2 = g(g(2)),x3 = g(g(g(2))), . . .
for some function g such as g(x) = (x2 +1) mod N. The
algorithm runs two of these sequences at once, with
one running “twice as fast” as the other. Eventually the
sequences will reach a cycle and collide, at which point
we can take the gcd of the two points and potentially
retrieve a non-trivial factor. If no factor is found, we can
restart the algorithm with either a new function g or a
new seed.

Dixon’s factorization method [1] is a general-purpose
integer factorization algorithm. It works as follows:
First, choose a bound B (the optimal runtime is achieved

by choosing B = exp(
√

logN log logN)) and let the
factor base be the set of all primes smaller than B. Next,
search for positive integers x such that x2 mod N is B-
smooth, meaning that all the factors of x2 are in the factor
base. For all B-smooth numbers x2

i = pe1 pe2 . . . pek ,
record (x2

i ,~ei). After we have enough of these relations,
we can solve a system of linear equations to find some
subset of the relations such that ∑~ei =~0 mod 2. (See the
Implementation section for details on how this is done.)
Note that if k is the size of our factor base, then we only
need k + 1 relations to guarantee that such a solution
exists. We have now found a congruence of squares,
a2 = x2

i and b2 = p∑i ei1
1 . . . p∑i eik

k . This implies that
(a+ b)(a− b) = 0 mod N, which means that there is a
50% chance that gcd(a−b,N) factors N. The runtime of
Dixon’s factorization method is exp(

√
2logN log logN).

The quadratic sieve [3] is an optimization of the stage
of Dixon’s factorization method that searches for B-
smooth numbers. Dixon’s generates B-smooth numbers
by randomly sampling numbers and checking whether
they can be factored by the factor base. This is a
very slow operation since we have to perform at least B
arithmetic operations for every number being checked.
The quadratic sieve uses the fact that f (x) being B-
smooth is equivalent to f (x) = 0 mod pi for f (x) =
x2−N and small primes pi to “sieve” for smooth num-
bers in a manner similar to the Sieve of Eratosthenes.
The quadratic sieve improves the runtime of Dixon’s to
exp(
√

logN log logN).

2 Implementation

The code for this project along with instruc-
tions for how to build and run it are available at
https://github.com/jspeiser/factoring. The files dixons.cc
and pollard.cc both contain a factor function that
could be used as library functions, but for ease of



demonstration they also have main functions that can be
invoked from the command-line.

Note that these implementations are pure implemen-
tations of the algorithms in question; they do not contain
any logic for factoring numbers with multiple prime
factors or for sanity checks such as whether N is even.
This was a purposeful decision so that users of the
library have the flexibility to heuristically decide which
algorithms to use for numbers of various sizes.

Since Pollard’s rho algorithm is so simple, this section
will focus on implementation details of Dixon’s factor-
ization method. The only interesting thing to note about
my implementation of Pollard’s rho algorithm is that the
user can specify a maximum number of seeds to try fac-
toring N with before returning that there are no factors.

2.1 Gaussian Elimination

The Gaussian elimination step of Dixon’s algorithms was
a classic example of something that is mathematically
simple but non-obvious how to implement in practice.
Recall that during Dixon’s factorization method we must
solve a binary matrix to find a linear combination of
equations such that their sum equals zero. The solving
of a binary matrix is itself very straightforward: keep a
matrix of bits and transform it into an upper triangular
matrix by swapping and XORing rows as necessary. In
my implementation, each row is an array of uint64 ts
as large as necessary to represent the factor base (each
bit of a uint64 t represents a column of the matrix).
The trouble comes in when trying to construct the set
of B-smooth values whose combination results in the
zero row left at the bottom of the matrix. Since rows
are swapped during Gaussian elimination and we are
interested in combinations of rows instead of the actual
solution to the system of linear equations, there is no
clear way to reconstruct the information that we need.

To deal with this issue, I chose to keep a mapping of
xi’s to x j’s with the number of times x j had been added
to xi during the Gaussian elimination process. At the end
of the algorithm, any x j with an odd count is considered
to be part of the linear combination that resulted in the
final xi row.

As an optimization, the Gaussian elimination func-
tion findLinearDependencies returns all of the linear
combinations that result in~0. This was an attempt to re-
duce the number of times that the algorithm has to iterate
before finding a nontrivial factor. Since generating B-
smooth numbers is the bottleneck in Dixon’s and Gaus-
sian elimination becomes faster with each solved row, I

believe that this optimization makes more sense than ter-
minating Gaussian elimination as soon as there is a row
of zeros. This would be an interesting area of experimen-
tation, especially with the quadratic sieve optimization.

2.2 Parallelization
There are two main opportunities for parallelization
in Dixon’s factorization method: the generation of
B-smooth numbers and Gaussian elimination. I paral-
lelized both.

Parallelizing the generation of B-smooth numbers is
simple in Dixon’s factorization method since candidates
are generated at random. I simply create the maximum
number of threads specified by the user (the default is 8)
and have those threads generate B-smooth numbers until
I have as many as desired.

Parallelizing Gaussian elimination is a little trickier.
The obvious intuition is to parallelize the processing of
each row, but since every row can potentially affect ev-
ery other row this does not work. Instead, I parallelize
only the adding of rows. In Gaussian elimination, when
processing a row i we look for the first unprocessed row
whose ith column is a 1 and swap it with the target row.
We then XOR this row with any row with a 1 in the ith
column, thus ensuring that column i is 0 after row i. This
process of addition can be parallelized, since at this point
the rows are independent. I divide up rows i+ 1 to the
bottom of the matrix evenly among the available threads,
and only proceed to the next target row when all addi-
tions are complete.

2.3 Big Integers
The code available on the master branch of the github
repository does all operations with uint64 ts. Obvi-
ously, this is too small for anything close to the scale of
RSA moduli. For that reason, there is a bigint branch on
the repository that supports factoring integers of arbitrary
size. This branch uses the boost::multiprecision

library to perform any operations with the potential to
overflow a uint64 t. The branch is functional, but slow
to the point of being unusable. Future development on
this project will have to look into more efficient ways
of dealing with arbitrarily large integers than the boost

library provides. (Alternatively, the speed degradation
could be mitigated by parallelizing across multiple ma-
chines instead of a single one.)

While not desirable in the long term, constraining the
code to uint64 ts provided an interesting set of chal-
lenges regarding overflow. Supporting the factoring of
integers up to the maximum that can fit in a uint64 t

2



1 2 3 4 5 6 7 8
Number of Cores

0

10

20

30

40

50

60

70
Fa

ct
o
ri

n
g
 T

im
e
 (

s)

Figure 1: Time to factor 773,978,585,664,881 using
Dixon’s factorization method with different numbers of
cores.

means that almost any intermediate operation during the
factoring process is likely to overflow. To deal with this
issue I used special mulmod and modpow functions de-
signed to avoid overflow.

3 Results

Because using arbitrary precision integers slows down
my implementation on Dixon’s to the point of being un-
usable, the numbers that I present here are for the imple-
mentation that uses uint64 ts.

3.1 Comparison
Factoring 982,451,629 · 982,451,653 =
965,211,226,903,592,737 with Dixon’s takes 8
minutes, 3.64 seconds (on 8 cores with B = 247,108 and
1 iteration). Factoring the same number with Pollard’s
takes 0.036 seconds. This discrepancy is consistent with
the fact that Pollard’s is supposed to be more efficient on
small prime factors.

3.2 Parallelization in Dixon’s
Figure 1 shows the time to factor 15,485,863 ·
49,979,687 = 773,978,585,664,881 with various num-
bers of cores (this number was chosen because it is large
enough to see clear performance differences but small
enough that testing was relativly quick). My machine
has 4 physical cores and 8 if you include hypertwins,
which explains why the performance improvement levels
off with more than 4 cores. I suspect that the improve-
ment between 1 and 4 cores is not quite linear due to is-
sues related to thread creation overhead and cache coher-

0 20000 40000 60000 80000 100000
B

0

5

10

15

20

25

30

35

40

Fa
ct

o
ri

n
g
 T

im
e
 (

s)

Figure 2: Time to factor 773,978,585,664,881 using
Dixon’s factorization method with different choices of
B.

ence/locality. Instead of maintaining dedicated worker
threads, the code currently spins up new threads every
time there is new work to complete. Additionally, there
are a couple of data structures used in Gaussian elimi-
nation that would probably benefit from resturcturing to
ensure that different threads operate on different cache
lines.

3.3 Choice of B in Dixon’s

Figure 2 shows the time to factor 773,978,585,664,881
with different values of B (all on 8 cores). The theoret-
ically optimal value of B for this number is 60356, but
the graph shows that performance is actually much bet-
ter with smaller values of B. I suspect that this choice of
N is simply too small for the chance of finding a trivial
factor to be an issue.

4 Conclusion and Future Work

Working on this project brought up several interesting is-
sues regarding software design of theoretical algorithms.
First, machine architecture has a significant impact on
performance. Arbitrary precision libraries slow down ba-
sic arithmetic operations significantly, making it infeasi-
ble to factor large numbers on a typical laptop. To scale
to larger integers would require either a cluster of many
machines working in parallel or an architecture with a
larger word size (128- or 256-bits). Second, theoreti-
cal guidelines on parameter values are not necessarily
what should be used in practice. These should be deter-
mined experimentally, as they likely depend on architec-
ture and implementation details. Finally, there are per-

3



formance bottlenecks that theory does not account for,
such as cache coherency.

There is a lot of room for future work on this project.
The obvious next step is to finish implementing the
quadratic sieve and compare it to Dixon’s. After that, I
think it would be beneficial to figure out what is slow
in boost’s arbitrary precision library, find another li-
brary, and/or implement such a library myself. Further
comparison of factoring algorithms is not possible when
constrained to the size of a uint64 t, since these al-
gorithms are meant to be used on much larger numbers
(the quadratic sieve is most efficient on numbers between
1050 and 10100, for example). Finally, it would be in-
teresting to investigate how clusters of machines can be
used to parallelize further than multiple cores on a single
machine.

References
[1] DIXON, J. D. Asymptotically fast factorization of integers. Math-

ematics of computation 36, 153 (1981), 255–260.

[2] POLLARD, J. M. Theorems on factorization and primality testing.
In Mathematical Proceedings of the Cambridge Philosophical So-
ciety (1974), vol. 76, Cambridge Univ Press, pp. 521–528.

[3] POMERANCE, C. A tale of two sieves. Biscuits of Number Theory
85 (2008), 175.

4


