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Abstract

Proof of Work mechanisms are essential to the security
and value of cryptocurrencies. The most prominent cryp-
tocurrency, Bitcoin, employs a Proof of Work that is
asymmetric with respect to time, i.e. the prover incurs
a significant time cost to determine a solution to a Bit-
coin challenge but the verifier requires little time to ver-
ify a solution. However, the Proof of Work is symmetric
with respect to space: both the prover and the verifier
require little amounts of space. A Proof of Work that
is asymmetric with respect to space could significantly
reduce the waste generated by the time difficulty of the
current Bitcoin Proof of Work. In this paper, we sur-
vey two Proof of Work proposals with asymmetric space
requirements: Cuckoo Cycle and Equihash. We also sur-
vey a Proof of Work mechanism for which the solutions
to challenges can be applied to problems of practical in-
terest.

1 Introduction

The Bitcoin [6] electronic cash system rewards users that
invest computational resources for solving a particular
challenge with a coin. This coin serves as a certificate
for the work performed. This interaction is commonly
referred to as a Proof of Work (PoW) mechanism. The
PoW mechanism is essential in giving the currency
value and security from forgery and double-spending
attacks. The current Bitcoin PoW mechanism requires
participants to invest a significant amount of time
in computing the solution to the current challenge.
However, the mechanism requires very little utilization
of another important computational resource: space.

The main motivation for the replacement of the cur-
rent Bitcoin PoW mechanism is that the computation is
wasteful. This notion of wastefulness has two unrelated
concerns. The first has a physical interpretation: the

computation consumes an unsustainable amount of
electricity on modern computing hardware. The physical
resource consumption to generate this electricity has
been called an environmental disaster [5]. The second
interpretation is one of usefulness. The solutions to the
Bitcoin PoW challenges are not useful computations
that have practical applications. We describe and detail
a formalization of this notion in section 5 and how it can
link to space-based PoWs.

First we survey the literature on Bitcoin and alternative
cryptocurrencies. In particular, we describe POW mech-
anisms and their motivations. We describe two proposed
PoWs based on functions that are space-hard to compute
but space-easy to verify: Cuckoo Cycle and Equihash.
We also delve into further reducing computational waste
through Proofs of Useful Work. We then describe how
a new PoW mechanism can be incorporated in the cur-
rent Bitcoin network and the challenges associated with
the process. Lastly, we describe further work that can be
done in this area.

2 Bitcoin

The main purpose of Bitcoin is to provide a secure elec-
tronic currency the exchange of which does not require a
financial intermediary. A system that provides this cur-
rency needs to be resistant to double-spending attacks.
To achieve such a currency, the Bitcoin system relies on a
completely public transaction history for all coins stored
in a blockchain. To add new blocks to the blockchain,
participants in the network must solve a computational
challenge, the solution of which grants the solver a valu-
able reward in the form of Bitcoins. At any given mo-
ment in the Bitcoin network, the longest blockchain is
the one recognized by the nodes in the network. The
difficulty of the computational problem makes forging a
longer blockchain computationally infeasible.



2.1 Proof of Work

The Bitcoin PoW has two key importances to the Bitcoin
network. First, it gives the currency value. By invest-
ing significant resources, solvers demand a return for the
work put into mining Bitcoins. As a result, the currency
gains value. Second, the Proof of Work makes it impossi-
ble for someone to forge a valid blockchain. The current
Bitcoin PoW operates by scanning for an origin block
such that its SHA-256 hash begins with some number of
zeros, as specified by the Bitcoin network. The origin
block contains a block header, a nonce, and the hash of
the last block in the currently accepted chain. Assum-
ing SHA-256 is a one-way function, solving instances of
this problem is computationally intractable and requires
a brute-force search. Thus, in computing a solution to an
instance, one must have performed a great deal of work
and invested a significant amount of computational re-
sources. However, computational resources come in a
variety of forms: time, space, randomness, etc. While
the current Bitcoin PoW mechanism requires a signifi-
cant investment in time, it requires very little space. In
aggregate, a participant needs approximately 80 bytes [6]
to find a solution to a challenge.

2.2  Altcoins

Bitcoin has spurred hundreds of alternative cryptocur-
rencies — also called altcoins — that seek to improve the
original Bitcoin system. These improvements span a
wide range of problems. However, we limit our discus-
sion to those focus on utilizing space as a computational
resource in their POW mechanisms.

The scrypt hash function is the most popular basis
for a memory-hard PoW mechanism [4]. Such PoW
mechanisms have been implemented in the fairly
popular Litecoin and Dogecoin. However, the scrypt
hash function is designed to require a lot of memory
regardless of its input. Thus, PoW mechanisms based
on the scrypt hash function are not symmetric with
respect to space. If the prover requires a lot of space
to find a solution, the verifier must also use a lot of
space to verify the solution. This opens the verifier to
denial of service attacks as the verifier can be spammed
with false solutions; it is critical for a verifier to run
with little computational requirements. Thus, to satisfy
this constraint, the PoW mechanisms for Litecoin and
Dogecoin allow GPU and ASIC enabled provers to
obtain a significant advantage over regular users. A PoW
mechanism based on a function that is asymmetric with
respect to space would enable a system in which provers
cannot optimize costs of space without undermining the
efficiency of the verifier.

3 Cuckoo Cycle

Cuckoo Cycle is the first PoW mechanism based on a
graph theoretic problem [7]. Furthermore, the function
that the PoW employs aims to achieve asymmetry with
respect to space. In particular, the Cuckoo Cycle PoW
is based on finding cycles in large random graphs. The
prover then utilizes a Cuckoo hash table to find a cycle
that satisfies the length requirement specified in the is-
sued challenge.

3.1 Proof of Work

The challenge issuer fixes a hash function £ : {0,1}X x
{0,1}" — {0,1}"° and a target subgraph H, which in
our case is a cycle. He then samples k € {0,1}X, N €
[2%], and M € [2%~1] uniformly at random. Here & is
the key, N is the number of vertices in the random graph,
and M is the number of edges in the random graph. With
these parameters, we construct a bipartite graph Gy =
(V,E) as follows:

V={vo,.-,vn-1},

E={{002) mod %)’Vz(h(k,ziﬂ) mod %)H} [0<i<M)}.

An input i is also called a nonce. To solve this challenge,
a prover computes a list of nonces that identifies a sub-
graph of Gy, that is isomorphic to H. To further fine-tune
the difficulty of solving the challenge, the challenge is-
suer may also constrain the hash of the solution to be
smaller than some specified 7, i.e. the SHA-256 hash of
the solution begins with a specific number of zeros.

3.2 Cycle Finding

To find the desired cycle in Gy, a prover utilizes a
Cuckoo hash table. The Cuckoo hash table consists of
two tables, each with N elements. Generally, each table
has its own hash function. Thus, the Cuckoo hash table
can be thought of as a directed bipartite graph where
the out-degree for each vertex is one. We have two
partitions in the Cuckoo graph, each labeling the vertex
set of G, which we name A and B without loss of gen-

erality. For each edge e € E, we fix an ordering e = {1, r}.

Next, we iterate through the edge set of Gy. If
r € A is not mapped to some v € B, we add a directed
edge from r € A to [ € B. Otherwise, if [ € B is not
mapped to some v € A, we add a directed edge from
| € BtoreA. If neither case holds, we reverse the
edges of the shorter directed path (that begins at r € A or
[ € B). If the reversed path and the non-reversed path do
not share the same root, we add the appropriate directed
edge to the Cuckoo graph. Otherwise, we have detected



a cycle, from which it is easy to extract the cycle. If
the cycle has the desired length, we return it. Otherwise
we discard the last edge added to the Cuckoo graph,
revert the reversed path to its original state, and continue
iterating through the edge set.

3.3 Security

The sparsity of the graph, determined by the ratio of
edges to vertices, approximates the level of difficulty
for a given challenge in the Cuckoo Cycle PoW. Tromp
conjectures that % < 1 satisfies the difficulty require-
ment for a practical PoOW scheme. As the graph becomes
more dense, the number of cycles (or target substructure)
in the graph increases in expectation. Empirically, the
probability that a graph on N vertices has a cycle of
length [ as a function of the ratio % can be represented
with a logistic function. As a result, the challenge issuer
can tune the parameters M and N to achieve the desired
difficulty. Furthermore, Tromp empirically shows that
the number of memory accesses per nonce is superlinear
with respect to the percentage of nonces processed,
implying that the PoW scheme achieves the desired
asymmetry with respect to space.

Edge Trimming. David Andersen describes an opti-
mization to the cycle finding algorithm that significantly
reduces the number of edges processed [1]. This opti-
mization takes advantage of the fact that every vertex in
a cycle has a degree of two. Thus, for all vertices v € V
with degree one, we can eliminate edges from Gy adja-
cent to v. Edge trimming can also be parallelized safely
for further time efficiency. As a result, the time-space
tradeoff for this optimization is not very steep. Edge
trimming works well if Gy, is especially sparse since the
prover can efficiently compute the degrees of vertices
from the smaller edge set. Consequently, the challenge
issuer loses his effectiveness in increasing the difficulty
of a challenge by increasing the sparsity of the graph.

4 Equihash

4.1 Generalized Birthday Problem

Biryukov and Khovratovich propose an alternative
asymmetric Proof of Work scheme based on the gener-
alized birthday problem [3]. The main motivation for
developing this PoW was to generate an asymmetric
PoW that cannot be optimized as dramatically as the
Cuckoo Cycle PoW.

The generalized birthday problem, or the k-XOR
problem, is defined as follows: given a list L of n-bit
strings {X;}, determine a subset of unique {X;;} such

that the XOR of all its elements is equal to 0. In the case
of Equihash, each X; is the output of a non-keyed PREF,
such as a hash function in counter mode, and so we wish
to satisfy

H(i)) & H(i))&... & H(iy) = 0. (1)

To solve an instance of the k-XOR problem, one can run
Wagner’s algorithm, which runs in time (k+ 1)N using
space (2K=! +n)N/8 [3].

Algorithm 1 Wagner’s Algorithm for solving the k~-XOR
problem. Given list L of n-bit strings, N << 2"

1: Enumerate the list as X;,X5,...,Xy and store (X;,i)
in atable T.

2: Sort T on X;. Find all unordered pairs (a,b) such
that the first % bits of X, X}, is equal to 0. Replace
the table T with these pairs, where each i becomes a
tuple (a,b).

3: Repeat step 2 for the next 37 bits until k% bits are
non-zero.

4: Find a collision on the last % bits.

s: Return list {i;} satisfying Equation (1).

4.2 Security

Amortization. One issue with the k-XOR problem is
that with sufficient memory, one can amortize solutions
of instances by storing strings that generate subsets of
colliding bits. However, despite this amortizability,
Biryukov and Khovratovich notice that intermediate
2/-XORs collide on some % bits. Thus, by requiring
solutions to satisfy which bits these intermediate 2/
XORs agree on, we reduce the amortizability of the
original k-XOR problem with high probability. The
authors refer to this technique as algorithm binding since
this constraint binds the solver to a specific algorithm
flow.

Time-Space Tradeoffs. A solver can perform two
types of optimizations for computing Wagner’s algo-
rithm. To reduce the size of the table 7" in memory, a
prover might recompute intermediate XOR values from
the indices. However, this is impractical for large k as
the recomputations take too much time. Second, the
prover might store only a fraction ¢ of the bits for each
index. Then after the last step, the prover recomputes the
missing fraction of index bits for the solution. For large
t it suffices to check the XOR of each possible pair of
the solution. For smaller 7, the prover essentially repeats
the algorithm with 2% different lists. An empirical result
shows that a combination of these two optimizations
yields the best results [3]. However, the optimized



Wagner algorithm still requires a non-trivial amount of
space and time to run. More specifically, the optimized
algorithm runs in k25772 time and 277 (2% 4 )
bytes of memory. Thus, with proper choice of parame-
ters to the problem, the challenge issuer can set difficulty
requirements for solving challenges at little verification

overhead.

Farallelism.  There are two ways in which paral-
lelism can be sought after during computation time. The
first is in the choice of sorting algorithm and the second
in the collision search. Biryukov and Khovratovich do
not claim security against parallelization. However, both
forms require a memory access bandwidth that restricts
the effectiveness of modern GPUs and ASICs. In
particular, with p processors, memory bandwidth grows
by a factor of p. Since the best commercial products
do not exceed 512 GB/s bandwidth and regular desktop
computers can have a 17 GB/s bandwidth, solvers
utilizing GPUs and ASICs are not at an overwhelming
advantage over regular users.

4.3 Proof of Work

The Equihash POW mechanism works as follow. First,
the challenge issuer selects a cryptographic hash function
H and integers n, k,d used to specify the following PoW
constraints:

(a) Memory M is 251 bytes

(b) Time T is (k+ 1)21#11” calls to the hash function
H

(c) Solution size is 2"(,{%1 + 1)+ 160 bits
(d) Verification cost is 2% hashes and XORs.

Next, he selects a seed I and issues a challenge to find
a 160-bit nonce V and (g7 + 1)-bit x1,x2,...,x such
that the nonce satisfies:

(@ HI|V|x1)®...aHI||V]xyx) =0
(b) H(I||V||x1]|...||xx) has d leading zeros.

(C) H(IHVHXWZI-H) D...D H(I||V||xw2l+21) has kiﬁll
leading zeros for all w, !

() (eporgqll--- [Pepr 1) <
(xw21+2lfl+1 [ wa21+21)

Here, (a) is the solution to the instance of the general-
ized birthday problem, (b) sets the difficulty requirement
that the challenger imposes on the solver, and (c) is the
algorithm binding to prevent amortization.

5 Proofs of Useful Work

A Proof of Useful Work (uPoW) mechanism must sat-
isfy a hardness requirement similar to a regular PoW:
providing correct solutions to challenges implies that the
prover performed a meaningful amount of work. Fur-
thermore, a uPoW must also satisfy a notion of useful-
ness, i.e. the solution to a network-issued challenge can
be quickly and verifiably reconstructed from the solvers’
response. Thus, a uPoW has an extra Recon algorithm
which, given the solution to a challenge for the uPoW,
reconstructs a solution to an instance of a problem that
reduces to the problem used by the uPoW. A repository
of solutions to instances of these hard problems can then
be referred to for related practical tasks. Ball et al. show
uPoW mechanisms for the Orthogonal Vectors, 3SUM,
and All-Pairs Shortest Paths problems [2]. Furthermore,
the network can issue challenges for problems that re-
duce to one of OV, 3SUM, and APSP. Thus, instances
of such problems with practical interest can be delegated
to the computing network as a means of faster and less
wasteful computation.

5.1 Orthogonal Vectors

The k-Orthogonal Vectors (k-OV) problem is specified
as follows. Given k sets of n vectors, (Uy,...,Uy), where
each vector has dimension d. Decide if there exist u® €
Us, s € [k] such that the dot product is 0:

Zu}---ué‘:O.
]

leld

While £-OV is conjectured to be worst-case hard, there
is no conjecture for its difficulty in the average case. As
a result, Ball et al. define a related problem gOV which,
assuming worst-case hardness for k-OV, implies average-
case hardness for gOV. More specifically

gOV¥

. Twknd
nd,p IE‘I, —F,

Here, p is prime and all other parameters are the same as
in k-OV. gOV is then computed as

govy ,,(Ur,....U) =}

il,...,ikG[n]

H(l_”illl"'”il)'
le[d]

In words, gOV is a polynomial of degree kd that com-
putes the number of solutions to an instance of the k-OV
problem.

5.2 Interactive Proof of gOV

For [ € [d], let ¢ : I, — F,, where ¢ represents the /-th
column of Uy. Each such ¢ has degree at most (n—1).



Let g(i,...,ix) = Hle[d](l - (Z)ll(i]) ¢lk(lk) So

Z q(il,...,ik).

i|,...,l‘k6[n]

gov#

n,d,])(Ul?u"Uk) ==

In this case, we have that gOV has degree (n — 1)kd. For

any s € [k] and oy, ..., 01 € Fp,, define

qs,0,...,04_ | (x) = Z

iH,l,...,l'kE[’l]

q(al,...,ocs,hx,isﬂ,...,ik),

which we denote ¢, in short-hand notation. Here ¢; is a
univariate polynomial with degree at most (n— 1)d.

An interactive proof for gOV works as follows:
1. Prover sends the coefficients of g}

2. Verifier checks that ¥ ¢[, 47 (i1) = y. Reject if not
equal.

3. Fors=1,...,k—2

(a) Verifier sends random a, < F),
(b) Prover sends the coefficients of g, o o

(c) Verifier checks that

Zl’ﬁ,]E[Vl] q:+1,oc1 ..... a_y(is+1) = q;ﬁ,al,...,as,l (as)
Reject if not equal.

4. Verifier samples o_; < F, and checks that

qltfl,oc, yens O (akfl) =Gk—1,0,....04_ (akfl ) Reject
if not equal.

5. Verifier accepts.

The above protocol is an interactive proof for gOV
with perfect completeness and soundness error at most
k;’—,d [2]. Completeness is straightforward to see from the
definitions of g and ¢g;. We analyze soundness in more
depth. So a cheating prover wishes to have the verifier
accept a false solution. Then the prover’s g must be dif-
ferent from g;. Furthermore, since the degree of gj is
less than nd, the probability that ¢*(a;) = g1 (o) for a
uniformly random ¢ is less than "I—f. If the prover passes
this check, then the verifier again sends an ¢ for which
the prover must again send a qzal that is not equal to
42, - The probability of an equality in this case is again
less than 24, Since the protocol has k — 1 rounds, the
probability that the prover passes all the checks and gets

the verifier to accept is less than %.

5.3 Useful Proof of Work Scheme

The following four algorithms define a uPoW mecha-
nism based on the k-OV problem.

1. Gen(x): Given an instance x € {0, 1}  interpret x
as an element of IF’I‘,”d . Sample a random field el-
ement r € IF’I‘,”". Output a challenge as the set of
vectors ¢y = {y; = x+1tr |t € [kd+ 1]}

2. Solve(cy): Compute z; = gOV’,;d?p(yt) and output
the set s = { },c[kq41]- Run the interactive protocol
described in section 5.2 in parallel with Verify.

3. Verify(cy,s): Run the interactive protocol de-
scribed in section 5.2 in parallel with Solve.

4. Recon(cy,s): Interpret s = {z} as the evaluations
of a univariate polynomial A(¢) att = 1,...,kd + 1.
Interpolate to find the coefficients of  and compute
z="h(0). If z # 0, output 1 as the solution for k-OV,
else output 0.

Any problem that can be efficiently reduced to k-OV
can have its instances delegated as challenges in this
scheme. In particular, Ball et al. mention any graph the-
oretic property that can be stated in first order logic can
be reduced to k-OV.

6 Discussion

6.1 Integration of new PoW Mechanism

Updates to Bitcoin can be performed at three differ-
ent levels: hard forks, soft forks, and relay policy up-
dates [4]. The network requires a hard fork if the update
invalidates transactions or blocks under previous rules.
Since miners that would upgrade to solve this new com-
putational puzzle would produce blocks that would be
rejected by miners running an earlier version, the net-
work would have to perform a hard fork. Consequently,
hard-forks require near-unanimity amongst the miners to
successfully update the network. Given the current in-
vestment of Bitcoin miners in ASICs designed to solve
instances of the current SHA-256 hash problem, such
near-unanimous acceptance poses a significant challenge
to the POW mechanism update.

6.2 Future Work

Further work can be done on the analysis of cycle find-
ing with Cuckoo hash maps. It is possible that there
are more efficient cycle finding algorithms. Further-
more, it is unknown if Wagner’s algorithm is the most
efficient algorithm for solving the generalized birthday
problem. More efficient algorithms would break both
PoW schemes. Tromp explores cycles in his PoW mech-
anism, but leaves cliques and independent sets for further
review. The choice of substructure in the graph is arbi-
trary, which allows for a diverse set of graph-based PoW



mechanisms. Another area of research for PoW mecha-
nisms is in the quantum computer setting; there may be
algorithms that run on quantum computers which com-
pletely break modern PoW mechanisms. In this case, we
will need new Proofs of Work based on harder problems
that are hard even for a quantum computer. One such
example could be Ramsey number calculation.
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