Functional Encryption Survey

Gus Liu
Stanford University
Department of Computer Science

Abstract

Functional encryption is defined as a special type of en-
cryption that allows a user to learn a function of en-
crypted data. More specifically, a secure functional en-
cryption system allows a user to compute f(x) from an
encryption of x without enabling the user to learn any-
thing more about x. Functional encryption has very re-
cently emerged as an interesting field of cryptography
from its ability to provide fine-grained access control
to encrypted data. In this survey paper, we investigate
different definitions of security of functional encryption,
impossibility proofs that arise from these definitions, and
the resulting implications.

1 Introduction

Traditionally, public-key encryption has several
shortcomings. First, it only provides coarse-grained
decryption of data. More specifically, only a unique
secret key can be used to decrypt the data. For use cases
such as sharing data with groups of users based on their
credentials, this can lack functionality. Secondly, public
encryption is all-or-nothing, meaning that one either
completely decrypts the data or learns nothing about
the corresponding plaintext. For medical applications
where a particular field of data needs to be extracted
while preserving patient confidentiality, a more selective
method of computation is required, which gives rise to
functional encryption.

Functional encryption is important for any case where
a user Alice wants to communicate a function of x to
Bob without revealing x. For example, Alice can reveal
to Bob the output of an encrypted program without al-
lowing him to learn anything about the program itself. In
practice, a company may have an internal tool that only
individuals who satisfy particular conditions should be
able to decrypt. It may be essential to give access to a

simple function of the plaintext, such as showing a writ-
ten signature on a document image but no information
about the contents of the document. However, ensuring
security is a non-trivial task, as we will show.

2 Background

We describe more formally the syntactic definition of
functional encryption for a functionality F, which is a
description of the functions of the plaintext that can be
extracted from the ciphertext.

2.1 Setup

Definition 1. A functional encryption scheme for a func-
tionality F defined over (K,X) is a tuple of four PPT al-
gorithms, (setup, key generation, encryption, decryption)
that satisfy the satisfy all of the following conditions for
allke Kand x € X:

(pp,mk) + setup(1*)
sk < keygen(mk,k)
¢+ enc(pp,x)

y < dec(sk,c)

We require that y = F (k,x) with probability 1.

The setup step generates a public and master secret
key pair. The master key is then used to subsequently
generate the secret key for k. Next, the message x is
encrypted using the public key pp. Finally, y = F(k,x)
is computed from ¢ and sk.

2.2 Game-based Security

Now, we define security of this functional encryption
scheme. For b = 0,1, we define experiment b for an

adversary A as follows:

1. Setup: run (pp, mk)<— setup(1%) and give pp to A

2. Query: A submits queries k; in K for i =1,2,... and
receives sk; < keygen(mk, k;).

3. Challenge: A submits two messages mg and m;. He
receives F(k,mp) and F(k,m;) for which he has the
secret key sk. However, we restrict the choices of mg and
my such that F(k,mg) = F(k,m) necessarily because A
has the secret key. A is given enc(pp, mp).

4. A issues queries and eventually outputs a bit in {0, 1}.

The scheme is secure if |Pr[Wy]|—Pr[W;]| is negligi-
ble.

3 Challenges of Functional Encryption

Boneh et. al note that for some cases, the definition of
security is too weak. They provide an example where
F(k,x) = m(x) where 7 is a one-way permutation and
k = € is defined to be the empty key. While the correct
way to achieve functional encryption is to output 7 (x)
on input x, an incorrect approach is to simply output
x. However, this incorrect approach satisfies the secu-
rity game defined in the previous section. We see this
with any two values x and y, where F(g,x) = F(g,y)
if and only if x =y, and so the attacker is only able to
submit messages where mo = mj. It is clear that this ap-
proach leaks too much information about x, namely x it-
self. Therefore, they define a simulation based definition
of security.

3.1 Simulation-based Security

Definition 2. A functional encryption scheme is
simulation-secure if there exists an oracle PPT algorithm
Sim = (Simj, Simgp, Simy) such that for any oracle
PPT algorithms Message and Adv, the two following
distributions are computationally indistinguishable:

Real Distribution:

1. (pp, mk) «+ setup(l’l)

2. (%, T) « Messagekeyeen(mk:) (ppy)

3. ¢ < enc(pp, X).

4. o+ Advkeveen(mk) (pp 1),

5. Let yi,...,y; be the queries to keygen made by
Message and Adyv in previous steps.

6. Output (pp, X, T, &, y1,---, V1)

Ideal Distribution:
1. (pp. ©) + Sim; (1*)
2. (&, T) « MessageSmO0)loll(pp)
R 0 .
3. o+ Simg(AN PP (6 F (g, 7)) 4. Let y1,...,y,
be the queries to F' made by Sim in previous steps.

5. OUtput (ppa-i‘: 77057)’17-~-7yl)

Essentially, A is allowed to send adaptive queries to
the oracle, where for a query ¢, B(gq,x) is executed and
(y,x') is returned. The value y returned is sent to A as
the response and x is set as x’, which is sent to B the next
time a query is sent to the oracle.

3.2 Impossibility Results

Boneh et. al present an impossibility proof for
simulation-secure functional encryption.

Proof. Message(ll) constructs X: fori=1,...,leng + A,
the tuple (#;,0) where r; is a randomly and independently
chosen bit and /eng, is the maximum bit length produced
by the keygen algorithm for the key O and security
parameter A. T is empty. Then, AdvkeYen (k) (pp E,
T) works by calling the random oracle H on (pp, ©)
to obtain a string w of length A. Then, query for the
secret key for (w) and then for 0. Finally, use the key for
identity O to decrypt the whole ciphertext. Output a full
transcript of all computations done.

We consider what Sim must do to output a distri-
bution indistinguishable from the real interaction. We
have that Adv only makes one key query for (w), so Sim
must do the same. The distinguisher can check if w is
the output of H applied to some string of the form (pp,
¢). Therefore, the simulator must query this to H before
any other queries to F. At this point, the simulator does
not know anything about the plaintexts r;. As a result,
the fixed string z = (pp,¢) has the impossible property
that after only receiving leng bits of information, it can
deterministically decode z to be an arbitrary string of
length leng + A. O

This impossibility result shows that this level of
security can be impossible to achieve even in the case
of a non-programmable random oracle model where the
simulator only has access to the same random oracle
given to the distinguisher. Intuitively, this is the case
because any simulation-based definition that allows
the adversary to query for secret keys after seeing the
challenge ciphertext gives the adversary too much power.

We now present another impossibility result[1] that
we can compare with the first. This impossibility result
shows that general functional encryption under a one
message secure, non-adaptive simulation definition
is unusable. The lower bound exploits unbounded
collusions. A collusion of users is defined as a group
of n users who hold secret keys ski,...,sk, and an
encryption of x but cannot learn anything else about x

besides Ci(x), ...,Cy(x) for any polynomial g. Here, C is
defined as a circuit, or a function.

Theorem 1. There does not exist a functional encryption
scheme for the family:

Cy4(x) = wPRF (x,d)

where the input message x is the PRF seed for wPRF, a
weak pseudo-random function.

Proof. At a high level, the proof shows that the cipher-
text in a secure scheme for C; must grow with the size
of the collusion, which is impossible given the require-
ment to handle unbounded collusions. The key insight
is that if an adversary requests g secret keys, denoted
Cyy,---,Cq, and then requests for an encryption of a ran-
dom x, then the simulated ciphertext together with the
q simulated secret keys construct a description of the
values wPRF (x,d1),...,wPRF (x,d,), which is indistin-
guishable from random by definition of the PRF. Using
a standard information-theoretic argument, this implies
that the ciphertext along with the secret keys must grow
with ¢g. In order to obtain a lower bound on the cipher-
text size, we use the fact that the simulator must generate
the secret keys before it sees the output of wPRF (x,-).
Therefore, the simulator has to generate a small cipher-
text that reveals information about all the pseudorandom
values, which is impossible using a compressibility argu-
ment. Thus, we have shown that a weak pseudo-random
family is incompressible and that secure schemes only
exist for compressible circuit families. O

4 Implications

The impossibility results demonstrate that with the as-
sumption that the adversary is given the power to make
an unbounded number of non-adaptive key queries, it is
impossible to achieve simulation-secure functional en-
cryption. The proofs use the fact that the size of the ci-
phertext depends on the collusion bound g. It does not
seem possible to construct a scheme where the cipher-
text size is independent of g. So where does this lead us
in terms of achieving reasonable security for functional
encryption? We explore a construction and a new notion
of security as ways to help shape what achieving security
means for functional encryption.

4.1 Modified Brute Force Construction

We define a random oracle H : {0,1}* — {0,1}. We
define s = |K| — 1 and K = {¢€,ky,...,ks}. The following
brute force functional encryption scheme uses a seman-
tically secure public-key encryption scheme (G,E,D)
and has the following steps:

1. Setup(1*): fori = 1,...,s run (pp;,mk;) < G(1*).

2. Keygen(mk,k;): output sk; := mk;.

3. Enc(pp,x): choose random values ry,....,rs €g
{0,1}*. Output ¢ := (F(e,x),E(pp1,r1),H(r)) ®
F(klax)»~~7E(pps7rs)vH(rs)@F(ks;x))-

4. Dec(sk;,c): output co if sk; = €, and output
H(D(skj,c2i—1)) @ ca; otherwise.

We want to prove the following theorem.

Theorem 2. Let F' be a functionality that reveals func-
tional bit lengths. If (G,E,D) is a semantically secure
public-key encryption scheme then the modified brute
force system above is simulation-secure in the random
oracle model.

Proof. Here, we provide a proof sketch for Theorem 2.
We do this by constructing simulators Simp,SimO, and
Sim;.

1. Sim;(1*) executes setup(1*) to obtain pp and mk.
Output pp and o = (mk, O, k) where O and K are empty
lists. O is used to track the simulated random oracle, and
K to track key queries.

2. SIM)(-)[[o]] responds to random oracle queries and
keygen queries that the adversary Message makes.

a. In response to random oracle queries ¢, the simula-
tor checks if a pair (g,y) exists in O. If it does, it
provides y as the response. Otherwise, the simula-
tor chooses a random string y, adds (g,y) to O, and
responds with y. O is updated in ©.

b. In response to a adversary query for key k;, the sim-
ulator sends the secret key mk; to the adversary. It
then adds k; to k. k is updated in ©.

3. Simg(f")’Adv(pp"’T)(G,F(f, €)) works as follows:

a. Let m be the number of elements in X. For
i =1,...,m, choose random strings r;y,...,r;, and
Ri1,..,Ris, and for j =1,...,s, create the ciphertext
components ¢;2;—1 = E(ppj,rij)and ¢;2j =R; ;. If
O already contains any queries to the random 7; ;’s,
abort.

b. For all keys k; in x, the simulator invokes the F ora-
cle and obtains F (k;,X) = (z1,...,Zm). Add the pairs
(ri,1,Ri1 ®21)s e, (Fim,Riyn ® 2m) to O. If any r; ;
were in O, abort.

c. Invoke Adv(pp,c,t) using the “fake” ciphertext
created above.

d. Responds to queries as follows:

i. Random oracle queries: On query ¢, the sim-
ulator checks if (¢,y) is in O. If it does, it pro-
vides y as the response. If it doesn’t, it checks

if g is equal to any of the random r; ; chosen
above. If so, abort. Otherwise, the simulator
chooses a random string y, adds (g,y) to O,
and responds with y.

ii. Key queries: In response to an adversary
query for k;, the simulator invokes the F oracle
and obtains F (k;,X) = (z1,-.,2m). It then adds
the pairs (ri_rl ,R,}] EBZ]), . (ri,m7Ri,m @Zm) to
O. Finally, it sends the secret key mk; to the
adversary.

e. When the adversary terminates and outputs ¢, the
simulator outputs o as well.

The rest of the proof is structured as follows. Note
that if the above simulation only aborts with negligible
probability, then the ideal distribution is statistically
close to the real distribution, since (except for the abort
condition) the simulation above behaves exactly as the
real execution. Thus, we prove that the simulation only
aborts with negligible probability by contradiction. We
assume that it doesn’t. This means that with noticeable
probability &, the adversary queries the random oracle
for some r;; value before asking for the key k;. We
use this to break the one-way security of the public-key
encryption scheme used.

Suppose we are given the public key pk for an en-
cryption scheme and a ciphertext C = E(pk,r) for a
random value r € {0,1}*. We will construct an attacker
that outputs r with probability at least ﬁ, where M
is some polynomial upper bound on m and the number
of random oracle queries that the adversary can make.
The attacker runs the simulation described above, but
it chooses i € [1,s] and j € [1,M] at random ahead of
time, and it replaces pp; with pk and r;; with r and
¢ipj—1 with C. If j > m, then the attacker aborts. At this
point, it randomly picks one of the queries ¢ made by the
adversary so far, and outputs this query as its guess for r.
It succeeds with probability at least s% by construction,
and so we are done. O

4.2 Unbounded Simulation

Agrawal, et al. take a different approach and instead
try to re-define what meaningful security is for func-
tional encryption. More specifically, they consider what
they call USIM security, where the simulator has un-
bounded computational power. Recall that a polynomial-
time simulation-based security for functional encryption
guarantees that against a computationally bounded ad-
versary holding a secret key sk, an encryption of x leaks
no more information about x than what an efficient adver-
sary can deduce given F(x). With USIM, security means
that an encryption of x leaks no more information about

x than what a computationally unbounded adversary can
deduce given F(x). The authors argue that this is a very
natural approach to security with many parallels to mul-
tiparty computation and zero knowledge.

S Relationship Between Notions of Secu-
rity

It is important to understand the relationship between dif-
ferent modes of security. Recall that so far, we have
defined three types of security. The first is the indis-
tinguishability or game-based definition, which we will
refer to as IND. The second is a simulation-based secu-
rity definition, which we call SIM. Lastly, we have the
unbounded simulation-based scheme that we call USIM.
We present a theorem that relates these types of security.

Theorem 3. Let FE be a functional encryption scheme.
If FE is SIM secure, then it is also USIM secure. In ad-
dition, if FE is USIM secure, then it is also IND secure.

Proof. First we prove that SIM = USIM. This is
trivially obtained because the unbounded simulator can
run the polynomial-time simulator.

Now, we prove USIM = IND by contraposi-
tive. Let A = (A1,A») be the adversary that breaks IND
security of the FE scheme. We construct an adversary
B = (By,B;) from A. Here, A is an IND adversary and B
is an USIM adversary.

1. Keygen: Run the keygen of A. Answer A;’s
key queries using the keygen oracle. Then, A; outputs
two messages xg,x; and a state st,. Now, choose a
random bit b and output (x,st) = (xp, [$t4,X0,X1])-

2. SimO invokes that of A, and outputs whatever bit
b' it outputs. The output of the real experiment is
(xp,5t = [stg,x0,x1], = b',Cy,...,Cy). Hence, with
probability significantly greater than a half, b = b’ and
the distinguisher can verify this. Now, we claim that
there is no unbounded simulator Sim, for the adversary
(B1,B>). That is, we argue that Sim,, cannot guess bit o’
with probability better than a half. We argue this because
the IND adversary A = (A},A;) is admissible, meaning
for all queries {C}}c[,) that A makes to B and hence B
makes to Sim,, we have that C}(xo) = C/(x;). The view
of Sim,, is statistically independent of the challenge bit
b.

Secondly, since the queries Ci,...,C, are part of the
output of the experiment, Sim,, is restricted to only make
admissible queries to the function oracle. Otherwise,
a distinguisher can easily distinguish between the real
and ideal worlds. Thus, it must be that C;(xo) = C;(x1),
Vi € [g]. Thus, the view of Sim, is statistically indepen-
dent of the challenge bit b.

From these two points, we see that the probability
the simulator guesses b correctly is at most % Therefore,
it cannot produce the output indistinguishable from the
real experiment. O

6 Conclusion

It is evident that there is still much exploration to be done
in either defining new methods of achieving an existing
security scheme for functional encryption or defining a
new notion of security that is practical. More specifically,
one of the largest open problems in functional encryption
is to construct a secure scheme for all polynomial-time
functionalities. As of now, it is a more practical goal to
accomplish security for all polynomial-time predicates.
As another possible avenue of research, Agrawal et al.
showed that it is worth taking time to develop new lower
bounds that can lead to a more practical and realizable
security notion, which USIM is a great step towards.

7 References

[1] Agrawal, S., Gorbunov, S., Vaikuntanathan, V., &
Wee, H. Functional Encryption: New Perspectives and
Lower Bounds.

[2] Dan Boneh, Amit Sahai, and Brent Waters. Func-
tional encryption: definitions and challenges. In TCC,
2011.

[3] Mihir Bellare and Adam O’Neill. Semantically-
Secure Functional Encryption: Possibility Results, Im-
possibility Results and the Quest for a General Defini-
tion. Cryptology ePrint Archive, Report 2012/515.

