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Abstract

Quantum secret sharing addresses the same problem that
classical secret sharing does, but via quantum means.
That is, Alice wishes to send a secret to n agents, and
any k ≤ n agents can collaborate to recover the se-
cret. However, for any fewer than k agents, collabo-
ration will information-theoretically reveal no informa-
tion about the secret. Such protocols are called (k,n)-
threshold schemes, and we focus on (2,2)-threshold
quantum schemes in this paper. One technique used
in quantum secret sharing is Grover’s algorithm, which
solves the unstructured search problem in sub-linear
time. This can be utilized by preparing a superposi-
tion of two-qubit basis states, then flipping the phase of
one of the components. Each agent receives one qubit,
and when they collaborate, they can search for the phase
error, thus reconstructing Alice’s secret. Hsu’s proto-
col outlines a (2,2)-threshold scheme, which has been
generalized to a (n,n)-threshold scheme for arbitrary n.
Tseng’s protocol outlines a similar scheme, but one that
doesn’t require that the agents have quantum memory,
and it also allows the agents to collaborate using shadows
in classical bits. However, more powerful protocols re-
quire much more sophistication than Grover’s algorithm,
and even with the additional sophistication, none to date
have been proven to be unconditionally secure against
dishonest agents.

1 Introduction

Grover’s algorithm was formulated in 1996 as an
optimal quantum algorithm for an unstructured search
problem, capable of solving a search problem over a set
of n elements in O(

√
n) queries, thereby exhibiting a

quadratic speedup over classical algorithms.[1][2] An

immediate corollary of this is that brute force attacks
against symmetric-key encryption schemes like the
Advanced Encryption Standard (AES) can be done in
O(2n/2) time, where n is the key size, thus requiring the
doubling of the key size to achieve the same security
parameter. However, Grover’s algorithm has much
more significant implications for cryptography. Namely,
various secure quantum secret sharing schemes can be
constructed from it.

Quantum secret sharing addresses the problem in which
Alice wishes to relay a secret message to two distant
agents, Bob and Charlie, but at most one of the two
agents may be dishonest. If the two agents work
together, then the honest one will be able to prevent the
dishonest one from sabotage. Therefore, she cannot
entrust either agent individually with the entire message,
but rather she encrypts her secret in two shadows,
neither of which individually reveal any information
about the secret. Only when the agents combine
their shadows can they learn Alice’s message. Such
schemes need to satisfy the classical definition of secure
secret sharing in that neither shadow individually can
information-theoretically reveal any information about
the secret. However, in the quantum setting, the protocol
also needs to ensure that the shadows are securely
transmitted, namely it needs to be secure against various
eavesdropping techniques and other forms of cheating.

A two-qubit secret sharing protocol was developed
by Hsu in 2003.[3] In this protocol, Alice randomly
prepares a two-qubit initial state, then changes the phase
of the component of the initial state corresponding to
the marked state that Alice wishes to share. Alice sends
one of the qubits to each of Bob and Charlie, who then
confirm via classical channels that they have received



the qubits. Alice publicly announces her initial state,
then Bob and Charlie combine their qubits to recover
the marked state. To do so, Grover’s algorithm is used
to search for component of the initial state that has
undergone a phase change.

This result was generalized in 2007 by Bhandari and
Chamoli into an n-qubit secret sharing scheme.[4] The
initial state is composed of n qubits, over a N = 2n

dimensional Hilbert space. The secret is encoded in N
4

of these basis states, which constitute the marked states.
Half of the marked states contain the encryption of the
first half of the message, and the other half of the marked
states contain the encryption of the second half of the
message. Alice applies a phase shift to the initial state,
then sends the n qubits to the agents. When the agents
collaborate, they will measure one of the marked states,
so Alice needs to repeat this process several times to
communicate all of the marked states.

A security flaw in Hsu’s protocol was discovered in
2010 by Hao, et al that permits a dense-coding attack
to recover the key information without detection.[5]
Hao proposed an amendment to Hsu’s protocol whereby
instead of publicly broadcasting her initial state, Alice
can instead require that the agents measure their qubits
in a randomly chosen basis, and she can then verify that
the results are consistent with her prepared initial state.

This protocol was further modified in 2011 by Tseng,
et al such that no quantum memory is required by the
agents, and the agents can recover the secret using shad-
ows in classical bits, without a need for combining their
shadows in photons.[6] This proceeds by using a more
general initial state for Grover’s algorithm. Let |S〉 be
the initial state, |ω〉 be the marked state, and |ω ′〉 be the
measurement result. Then under this new initial state, the
measurement result satisfies |ω ′〉 = |S〉⊕ |ω〉, which is
exploited to generate a new quantum secret sharing pro-
tocol. The agents, Bob and Charlie, generate n-bit keys
K0,K1, then communicate these keys to Alice via a se-
quence of photons. Alice combines these to generate the
corresponding sequence of n two-qubit initial states, and
she performs unitary transformations on each of these
initial states in accordance with her secret ω . Alice then
measures KA, which she sends to each of the agents, who
can then recover her secret ω = KA⊕K0⊕K1.

2 Grover’s algorithm

In 1994, Shor formulated a quantum algorithm to factor
integers in polynomial time, a significant improvement
from the most efficient classical algorithm, the general
number field sieve, which runs in sub-exponential time.
With such an advent, public-key encryption schemes like
RSA were effectively broken, and interest in efficient
quantum algorithms for classically difficult problems
surged. As a result, in 1996, Grover formulated an
optimal quantum algorithm for the unstructured search
problem. For a domain of N elements, this algorithm has
time complexity O(

√
N), a quadratic improvement over

the classical linear search algorithm. This is optimal in
the sense that a lower bound to the time complexity for
this problem was shown to be Ω(

√
N) by Bennett et al.

The unstructured search problem is formulated as
follows. Given a function f : X → {0,1}, we wish
to find an element ω ∈ X such that f (ω) = 1. To
simplify the algorithm, we make a couple of assump-
tions. We assume that such an ω is unique, and that
|X | = 2n = N for some n ∈ N. No generality is lost
in these assumptions as the algorithm can be extended
to relax the uniqueness assumption, and the domain X
can be extended until its cardinality is a power of 2.
Therefore, we can reformulate the problem. Given a
function f : {0,1}n→{0,1}, we wish to find the unique
ω ∈ {0,1}n such that f (ω) = 1.

We begin with a uniform superposition over the basis
vectors of the domain as our initial state.

ψ0 = ∑
x∈{0,1}n

1√
N
|x〉 (1)

To query f , we use an oracle gate O f that will output

O f |x〉= (−1) f (x)|x〉=

{
|x〉 if f (x) = 0
−|x〉 if f (x) =−1.

(2)

Querying the initial state flips the |ω〉 phase, yielding

ψ1 = O f |x〉=−
1√
N
|x∗〉+ ∑

x 6=x∗

1√
N
|x〉. (3)

Whilst this introduces an asymmetry in the |ω〉 basis vec-
tor, it doesn’t increase the amplitude of this component.
To increase the amplitude of this component, we intro-
duce the Grover diffusion gate D. For notational conve-
nience, we let we αx denote the coefficient of |x〉, then
we define

µ =
1
N ∑

x∈{0,1}n
αx (4)
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as the average coefficient. The Grover diffusion gate then
flips the coefficients of the basis vectors about the mean.

D ∑
x∈{0,1}n

αx|x〉= ∑
x∈{0,1}n

(2µ−αx)|x〉 (5)

The mean coefficient of ψ1 is

µ =
1
N

(N−1√
N
− 1√

N

)
=

N−2
N
√

N
≈ 1√

N
, (6)

so the coefficients of |x〉 6= |ω〉 are approximately un-
changed by the Grover diffusion gate, but the amplitude
of |ω〉 increases by a factor of 3. We then iterate
application of the oracle gate and the Grover diffusion
gate. For αω small, the coefficient of |ω〉 increases by
at least 1√

N
per iteration, so after O(

√
N) iterations, we

have αω = Θ(1).

Therefore, the unstructured search problem can be op-
timally solved by Grover’s algorithm with time com-
plexity O(

√
N).[1] An immediate consequence of this

for cryptography is that brute force attacks against
symmetric-key encryption schemes like the Advanced
Encryption Standard (AES) can be done in O(2n/2) time,
where n is the key size, thus requiring the doubling of
the key size to preserve the classical security parameter.
However, Grover’s algorithm has much deeper implica-
tions for cryptography, the first of which is a secure quan-
tum secret sharing protocol developed by Hsu in 2003.

3 Quantum Secret Sharing with Hsu’s Pro-
tocol

Hsu’s protocol is a one-to-two party quantum secret
sharing protocol. The proposed problem is that Alice
wishes to relay a message to two parties, Bob and
Charlie, but one of the agents may be dishonest. As long
as the two parties collaborate, the original message will
be faithfully recovered, but the shadow of any individual
agent reveals no information about the secret.

Formally, Alice wishes to share a bit of information in
a two-qubit marked state |ω〉. In the original Grover’s
algorithm, the initial state is

|S1〉=
( 1√

2

(
|0〉+ |1〉

))⊗2
. (7)

Let Ux = I−2|x〉〈x| be the unitary transformation corre-
sponding to flipping the sign of the |x〉 component. Then
two applications of this operator yield the marked state
with certainty.

−US1Uω |S1〉= |ω〉 (8)

With regards to Grover’s algorithm, this corresponds to
flipping the phase of the |ω〉 component, then search-
ing for this flipped phase. In general, some other initial
state |S j〉 can be prepared prepared, where each qubit in
|S j〉 is in any of the following four states: 1√

2
(|0〉+ |1〉),

1√
2
(|0〉− |1〉), 1√

2
(|0〉+ i|1〉), and 1√

2
(|0〉− i|1〉). Then

by applying the same transformations, we obtain

−US jUω |S j〉= eiφ j |ω〉, (9)

where φ j is a phase factor.

The protocol begins with Alice preparing an initial
state |S j〉 with j R←− {1, . . . ,16}. She then performs
Uω on |S j〉 and sends each of Bob and Charlie one
of the two qubits. Bob and Charlie each confirm via
classical communication means that they have received
the qubits, then Alice publicly announces her initial
state |S j〉. Bob and Charlie then combine their qubits
and perform −US j to recover the marked state |ω〉 with
certainty. The agents then perform their respective local
measurements in the computational basis, and inform
Alice of their results.

In this protocol, Alice encrypts her information in
the perfectly anti-correlated states |01〉, |10〉, whereas
the perfectly correlated states |00〉, |11〉 are used as
cheat-detecting states. If the honest agent finds that the
outcome state is perfectly correlated, then he concludes
that either Alice prepared a cheat-detecting state, or that
eavesdropping has occurred. Furthermore, the dishonest
agent cannot alter the public classical messages, so Alice
will at least receive the honest agent’s true outcome.
Therefore, Alice will be aware of any cheating behaviour
that perturbs the qubits and changes the correlation of
the outcome.

This protocol has also been shown to be secure against
various other cheating schemes. If the dishonest agent
outright declares the wrong outcome, the correlation of
the outcome will be changed, and such cheating will
immediately be detected. In the intercept-and-measure
attack, if Bob intercepts Charlie’s qubit and chooses a
random −US j to perform on the two-qubit system, there
is only a 1

16 probability that Bob will choose the right
−US j . If Bob applies the wrong −US j , the result is a
uniform superposition of states, so there is only a 1

4
probability of measuring the correct result. Furthermore,
it can be shown that after Bob sends the collapsed
product state to Charlie, Alice will be able to detect such
cheating with probability 5

16 .
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In the intercept-and-resend attack, Bob can instead inter-
cept Charlie’s qubit and send Charlie a different qubit,
then wait until Alice broadcasts the initial state |S j〉. Bob
then performs the corresponding unitary transformation.
However, since Bob has no knowledge of the marked
state when he sends Charlie a qubit, it can be assumed
that he sends Charlie a uniformly random qubit. It can be
shown that when Bob and Charlie collaborate, they will
measure a cheat-detecting state with probability at least
1
2 , and the sender and honest agent will immediately de-
tect such cheating. Two other eavesdropping strategies,
the intercept-resend strategy with orthogonal measure-
ments and a strategy based on entanglement, have also
been shown to be ineffective in Hsu’s original paper.[3]

4 Generalized Hsu’s Protocol

In 2007, Bhandari and Chamoli generalized Hsu’s proto-
col into an n-qubit secret sharing scheme.[4] The initial
state is composed of n qubits, over a Hilbert space of
dimension N = 2n. When Grover’s algorithm is general-
ized to search for one of M marked states in a domain of
N elements, it turns out that a marked state can be found
in time O(

√
N
M ). Furthermore, the probability of success

after one iteration of Grover’s algorithm is

p = 9
M
N
−24

(M
N

)2
+16

(M
N

)3
. (10)

This equals unity for M
N = 1

4 , so in this protocol, one-
fourth of the basis states will be marked. Notice that in
the original Hsu’s protocol, only one of the four basis
states was marked, thus allowing this state to be found
with certainty after one iteration of Grover’s algorithm.

Therefore, the secret is encoded in N
4 of these basis states,

which constitute the marked states. Half of the marked
states contain the encryption of the first half of the mes-
sage, and the other half of the marked states contain the
encryption of the second half of the message. Letting
Ω be the set of marked states, we generalize the unitary
transformation Uω to

UΩ = I−2 ∑
ω∈Ω

|ω〉〈ω|. (11)

Alice prepares an initial state |S j〉 with j R←− {1, . . . ,4n},
then flips the phase of the marked components with
the UΩ operator and sends to each of the agents one of
the N qubits. The agents again confirm via classical
communication channels that they are in receipt of the
qubits, and Alice publicly announces her initial state

|S j〉. When the agents collaborate and apply −US j , they
will measure one of the marked states with uniform
probability, so Alice needs to repeat this process several
times to communicate all of the marked states.

Just like in the original Hsu’s protocol, Alice can use
cheat-detecting states to detect dishonest agents, and
the cheating strategies mentioned earlier can still be de-
tected. In this general case, in the event that a dishonest
agent intercepts all of the bits and performs a random
−US j on the system, there is a 4−n probability of choos-
ing the correct −US j , and if the agent applies the wrong
−US j , there is again only a 1

4 probability of measuring
one of the N

4 marked states.[4]

5 Dense-coding Attack

Hsu’s protocol as originally presented turned out to be
insecure against a dense-coding attack, which was dis-
covered by Hao, et al in 2010. In such an attack, a dis-
honest agent can steal the key information without detec-
tion. Suppose Bob is the dishonest agent, and he inter-
cepts Charlie’s qubit. He prepares the Bell-state

|S0〉=
1√
2

(
|01〉+ |10〉

)
, (12)

and sends one qubit of this state to Charlie. Then when
Alice publicly announces the carrier state |S j〉, Bob can
recover the marked state |ω〉 from Uω |S j〉 with certainty
as in the original Hsu protocol. Bob can then perform
local operations on his fake qubit to transform its state
from |S0〉 to Uω |S j〉. Such procedures are presented in
Hao’s paper. He thereby changes the state of Charlie’s
qubit such that it is consistent with the protocol, and
neither Alice nor Charlie can detect this eavesdropping.

To remedy this security flaw, Hao et al proposed a re-
vision to Hsu’s protocol. After both of the agents con-
firm via classical communication channels that they are
in receipt of the qubit, Alice can perform one of two ac-
tions. Alice can broadcast her initial state |S j〉 as in the
original protocol, or Alice can require the agents to mea-
sure their qubit in a randomly chosen basis from the plus-
basis {|0〉, |1〉}, the cross-basis {|+〉, |−〉}, or the circu-
lar basis {|+ i〉, |− i〉}. In the former scenario, the agents
continue the protocol as usual. In the latter scenario, the
agents must publicly announce their outcomes and mea-
surement bases. If the outcomes are inconsistent with
the initial state, then Alice concludes that eavesdropping
has occurred, and the session is terminated. In this way,
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the dense-coding attack can be detected with probability
1
2 .[5]

6 Tseng’s Protocol

In 2012, Tseng proposed a different quantum secret
sharing protocol that has two key advantages over Hsu’s
protocol. In Tseng’s protocol, the agents do not need to
have quantum memory, and the agents can collaborate to
recover the boss’s secret by using shadows in classical
bits. In contrast, Hsu’s protocol requires that the agents
store the secret shadows in long-term quantum memory,
and the agents must combine their shadows in photons
to recover the boss’s secret.

Tseng’s protocol exploits a feature of Grover’s algorithm
if the initial state is taken to be |S〉 ∈ {|+〉, |−〉}⊗n, where
|±〉 = 1√

2
(|0〉 ± |1〉). We henceforth consider the case

of a two-qubit system with n = 2. Instead of using the
unitary operator US j , we use the unitary operator

U+ = I−2|++〉〈++ |. (13)

Let |++〉, | −+〉, |+−〉, | −−〉 correspond to the clas-
sical two-bit information 00, 01, 10, and 11 respectively.
Similarly, let |00〉, |01〉, |10〉, |11〉 correspond to the same
information, respectively. Then after Grover’s algorithm
is performed under these conditions, the measurement
result |ω ′〉 satisfies the relationship

|ω ′〉= |S〉⊕ |ω〉. (14)

The protocol proceeds as follows. Let ω ∈ {0,1}N be
the secret that Alice wishes to share, and let i ∈ {B,C}
denote the agents Bob and Charlie, respectively. The
agents i choose keys Ki

R←− {0,1}N , and prepare a
corresponding sequence of photons Si. For each bit of
Ki, if the bit is 0, the agent prepares |+〉, and if the bit
is 1, the agent prepares |−〉. The agents also prepare
sufficiently many decoy photons, which are chosen
uniformly at random from {|0〉, |1〉, |+〉, |−〉}, then
insert these into random positions in Si to obtain a new
sequence of photons S′i. The agents then relay S′i to Alice.

Alice publicly confirms that she has received S′i, then the
security of the quantum channels is verified by public
discussion. The agents announce the positions, bases,
and values of the decoy photons, and Alice measures
these photons in the corresponding bases. If the error
rate exceeds a predetermined threshold, then the protocol
is terminated.

Alice combines the two sequences of photons to obtain
a sequence |S〉 of N two-qubit states |S( j)〉 = |S( j)

0 S( j)
1 〉.

For each state |S( j)〉, Alice applies the unitary trans-
formation Uω( j)

, where ω( j) denotes the j-th bit of ω ,
U0 ∈ {U00,U11}, and U1 ∈ {U01,U10}. Alice then per-
forms −U+ on each |S( j)〉 in accordance with Grover’s
algorithm, obtaining −U+Uω |S〉. Alice uses the Z basis
to measure the photons of |S〉, and records the results,
where a measurement result of |00〉, |11〉 corresponds to
a bit of 0, and a measurement result of |01〉, |10〉 corre-
sponds to a bit of 1. Alice sends the result KA ∈ {0,1}N

to the agents, who then recover her secret as

ω = KA⊕K0⊕K1. (15)

We now analyze the security of this protocol. The de-
coy photons protect the protocol from an intercept-and-
resend attack, since if Bob intercepts Charlie’s photons
and sends Alice a stream of different photons, each de-
coy photon has a 1

4 probability of being correct. There-
fore, the probability that he evades detection is 1− ( 3

4 )
n,

where n is the number of decoy photons. It can also be
shown that this protocol is secure against the entangle-
and-measure attack, in which Bob intercepts Charlie’s
photons, entangles auxiliary photons with them, and then
resends the original photons. In such an attack, Bob will
information-theoretically be unable to obtain any infor-
mation about Alice’s secret.[6]

7 Closing Remarks

Despite almost two decades of work on quantum secret
sharing, no existing protocol has been proven to be
unconditionally secure against cheating schemes by
dishonest agents, even those that don’t rely on Grover’s
algorithm. Therefore, quantum secret sharing remains a
theoretical curiosity, and any practical implementation
of secure secret sharing must defer to conventional
parallel quantum key distribution. Furthermore, many
of the stronger protocols require ideal single-photon
sources or quantum memories, which are difficult to
realize in practice.

However, progress is still being made towards a secure
and realizable quantum secret sharing protocol, with
Kogias, et al publishing earlier this year an uncondi-
tional security proof for entanglement-based continuous-
variable quantum secret schemes for an arbitrary number
of agents, in the limit of asymptotic keys.[7] As such,
there is still hope that quantum secret sharing could be-
come a viable primitive for quantum technologies.
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